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Abstract  

In this dissertation work, a methodology is proposed to enable a robot to identify an object to be 

grasped and its intended grasp configuration while a human is teleoperating a robot towards the desired 

object. Based on the detected object and grasp configuration, the human is assisted in the teleoperation 

task. The environment is unstructured and consists of a number of objects, each with various possible 

grasp configurations. The identification of the object and the grasp configuration is carried out in real time, 

by recognizing the intention of the human motion. Simultaneously, the human user is assisted to 

preshape over the desired grasp configuration. This is done by scaling the components of the remote arm 

end-effector motion that lead to the desired grasp configuration and simultaneously attenuating the 

components that are in perpendicular directions. The complete process occurs while manipulating the 

master device and without having to interact with another interface.  

Intention recognition from motion is carried out by using Hidden Markov Model (HMM) theory. 

First, the objects are classified based on their shapes. Then, the grasp configurations are preselected for 

each object class.  The selection of grasp configurations is based on the human knowledge of robust 

grasps for the various shapes. Next, an HMM for each object class is trained by having a skilled 

teleoperator perform repeated preshape trials over each grasp configuration of the object class in 

consideration. The grasp configurations are modeled as the states of each HMM whereas the projections 

of translation and orientation vectors, over each reference vector, are modeled as observations. The 

reference vectors are the ideal translation and rotation trajectories that lead the remote arm end-effector 

towards a grasp configuration. During an actual grasping task performed by a novice or a skilled user, the 

trained model is used to detect their intention. The output probability of the HMM associated with each 

object in the environment is computed as the user is teleoperating towards the desired object. The object 

that is associated with the HMM which has the highest output probability, is taken as the desired object. 

The most likely Viterbi state sequence of the selected HMM gives the desired grasp configuration. Since 
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an HMM is associated with every object, objects can be shuffled around, added or removed from the 

environment without the need to retrain the models. In other words, the HMM for each object class needs 

to be trained only once by a skilled teleoperator.  

The intention recognition algorithm was validated by having novice users, as well as the skilled 

teleoperator, grasp objects with different grasp configurations from a dishwasher rack. Each object had 

various possible grasp configurations. The proposed algorithm was able to successfully detect the 

operator’s intention and identify the object and the grasp configuration of interest. This methodology of 

grasping was also compared with unassisted mode and maximum-projection mode. In the unassisted 

mode, the operator teleoperated the arm without any assistance or intention recognition. In the maximum-

projection mode, the maximum projection of the motion vectors was used to determine the intended 

object and the grasp configuration of interest. Six healthy and one wheelchair-bound individuals, each 

executed twelve pick-and-place trials in intention-based assisted mode and unassisted mode. In these 

trials, they picked up utensils from the dishwasher and laid them on a table located next to it. The relative 

positions and orientations of the utensils were changed at the end of every third trial.  It was observed 

that the subjects were able to pick-and-place the objects 51% faster and with less number of movements, 

using the proposed method compared to the unassisted method. They found it much easier to execute 

the task using the proposed method and experienced less mental and overall workloads. Two able-

bodied subjects also executed three preshape trials over three objects in intention-based assisted and 

maximum projection mode. For one of the subjects, the objects were shuffled at the end of the six trials 

and she was asked to carry out three more preshape trials in the two modes. This time, however, the 

subject was made to change their intention when she was about to preshape to the grasp configurations. 

It was observed that intention recognition was consistently accurate through the trajectory in the intention-

based assisted method except at a few points. However, in the maximum-projection method the intention 

recognition was consistently inaccurate and fluctuated. This often caused to subject to be assisted in the 

wring directions and led to extreme frustration. The intention-based assisted method was faster and had 

less hand movements. The accuracy of the intention based method did not change when the objects 

were shuffled. It was also shown that the model for intention recognition can be trained by a skilled 

teleoperator and be used by a novice user to efficiently execute a grasping task in teleoperation. 
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Chapter 1: Introduction 

In this section, the problem statement and the motivation behind solving the problem are 

introduced. This is followed by a brief overview of the project which includes the objectives of the project 

and the unique contributions. After this, a description of the previous related work is presented.  

1.1 Introduction to the Problem 

In general, an indoor environment is unstructured and has a number of objects, each with a 

number of different grasp configurations. Wheelchair-bound individuals are unable to reach out to areas 

that are too high, too low or otherwise unreachable, due to their disability. Elderly individuals face similar 

problems. A robotic arm mounted on a wheelchair or a mobile platform can assist them in grasping and 

manipulating objects. However, autonomous grasping is not robust and teleoperating a robotic arm is a 

physically and mentally challenging activity. On the other hand, humans have cognitive abilities and 

knowledge from experience that even the most advanced robots lack. A grasp with a configuration that is 

selected by a human is more likely to succeed than the one selected by a robot. Moreover, they are 

needed in the loop of robotic control to inform the robot about the object and the grasp configuration they 

are interested in, for grasping. The configuration for grasping is dependent on the task that the human 

would like the robot to perform after the object has been grasped. Elderly and individuals with disabilities 

still possess good decision making capabilities which can be used in a shared supervisory control 

framework to work collaboratively with the robot and grasp objects. The human controlling the robot must 

be able to command the robot about the object and grasp configuration of interest with ease and minimal 

involvement. 
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 Problem Statement 1.1.1

A methodology for controlling the robot is needed, that identifies the object and grasp 

configuration of interest for the robot so that either the object can be grasped autonomously at the desired 

configuration or the human can be assisted to preshape and grasp the object. The human should be able 

to indicate this to the robot easily without any additional interface burden. Thus, the system should be 

able to detect the human intention and assist the human to grasp the object. The method should also be 

able to detect the changes in intention on the fly and assist the human accordingly. The method should 

be able to work accurately in unstructured environments i.e. shuffling the objects in the environment 

should not require a new model to be trained and should not affect the accuracy of the intention 

recognition algorithm. The method also needs to be scalable i.e. adding or removing objects from the 

environment should not affect the accuracy. 

1.2 Motivation 

Over the past few years, research has increased in the area of service robots for carrying out 

Activities of Daily Living (ADL) in indoor environments, especially for persons with disabilities and the 

elderly [1]-[4]. These service robots are either in the form of a mobile manipulators [3]-[4] or wheelchair 

mounted robotic arms [1],[2]. Grasping is an important task since it is involved in most ADLs.  

Autonomous grasping is a widely researched area [5-25]. Early research in grasping [5-14] mainly 

focused on (a) developing mathematical models of grasping, (b) geometric and force analysis of grasping 

2D and 3D polyhedral shapes and, (c) determining optimum number of finger contacts for grasping. The 

aim was to determine the necessary and sufficient conditions for a stable grasp. The approach to the 

grasping problem was from a theoretical standpoint rather than a practical standpoint. Grasping 

commonly encountered objects was not considered and ideal models of the hand and the object were 

assumed. With the advances in computing, it became possible to model shapes of commonly 

encountered objects and the field of grasp planning emerged. In grasp planning [15-17, 19, 20], all the 

stable grasps that could grasp an object were run through an optimization step, based on a quality 
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criteria, to determine the best grasp. The quality criteria could be force-closureness [20, 21], based on 

task requirements [19], based on clutter [15] or a combination of some or all of the above criteria. 

Although, the various methods of grasp planning were successful in determining stable grasps, the main 

drawback was the large computing time needed for determining the grasp. This was due to the high 

dimensionality of the search space over which an optimization of the grasp criterion was carried out [18, 

26]. The high dimensionality was due to the large end-effector Cartesian space around the object where 

grasps would occur. It was also due to the high configuration space of the multi-DOF hands. This made 

grasp planning a time consuming and computationally intensive process.  To circumvent this problem, 

programming-by-demonstration (PbD) or learning-from-demonstration (LfD) techniques have been 

developed [22-25, 27-30]. These methods were of two kinds, the human hand centered [22, 23] and the 

object centered [24, 25, 27-30]. In the human hand centered methods, the human would first demonstrate 

a grasp to the robot, the robot would then create a learned model of the grasp from the sensor data and 

then the grasp would be reproduced. Human hand centered LfD methods determined the grasp quicker 

but had the following drawbacks: (a) They depend on a reliable vision system to identify the object, (b) 

grasp determination was only applicable to trained objects, (c) mapping from human hand to robot hand 

was needed for the method to be practicable and, (d) inaccuracies were introduced as humans have 

different ways of grasping the same object at the same configuration. In the object centered LfD methods, 

the learning algorithm would learn features of the object that resulted in good grasps and would 

determine grasps for novel objects by finding similar features. The main drawback of these methods was 

that, in some cases, the grasps returned were good grasps for objects used for training but were not that 

good for on objects used in testing. This was true if the trained and tested objects were different. For 

example, a pencil would be grasped from its mid-point and so would be the bottle, although this grasp 

configuration for the bottle may not be the best one. Moreover, these methods would return a grasp or 

grasps that may be difficult or impossible to achieve due to kinematic or environment constraints. The 

human operating the robot was unable to change the grasp. Thus, although LfD methods have shown 

great amount of success, a method that allows the human to choose a grasp configuration, out of the 

various LfD trained grasp configurations is needed. The human may choose the grasp depending on the 

task requirements and/or based on the feasibility of the grasp. 
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Ciocarlie and Allen [18] have demonstrated that a human input can reduce the time it takes for an 

autonomous planner to compute a robust grasp. In their work, the human preshaped a gripper at a point 

around the object and their grasp planner computed a locally optimized grasp. This reduced the problem 

from a global to a local optimization one. Their method took less than 2 seconds to compute a force 

closure grasp, which was far quicker than what autonomous planners usually take. Their work 

demonstrates that a human selected initial pose leads to a robust grasp faster than the grasp planners 

and that, the grasp is more likely to be successful. Human’s cognitive abilities and their knowledge 

gathered from experience are better than the most advanced robots. Humans can plan, analyze, act, 

react and in general process information quicker, more efficiently and in a more robust manner than the 

state-of-the-art computing systems. In indoor tasks involving a number of objects in cluttered unstructured 

environments, a human is needed in the loop for commanding the robot on the object to be grasped and 

its grasping configuration. 

Teleoperation of a remote arm offers a direct way of involving human in the loop but it has been 

largely unused for service robot applications. This is because teleoperation is a mentally and physically 

challenging activity [31, 32]. Teleoperation is the remote control of any mechatronic device e.g. a robot, 

whereas telemanipulation is specifically controlling a robotic manipulator or a robotic arm for manipulating 

a remote environment [33]. In an indoor setting, the arm can be mounted on a mobile base or a 

wheelchair. It could also be mounted on a stationary base such as a kitchen platform or an office table. 

The user could be controlling the remote arm with an input device such as a joystick. Input could also be 

acquired from a smaller low-impedance robotic arm, a data glove or it could be gesture-based control. 

This device is called the master device and the remote arm is also known as a slave. 

Transferring motions from the master to the slave manipulator leads to errors due to mapping and 

scaling. It makes the process time consuming and leads to frustration on the part of the user. Errors are 

produced even in translating the remote arm end-effector; a task that might seem simple to execute. 

Preshaping for grasping an object involves rotations of the gripper, which are more challenging to 

execute. Orienting the remote arm gripper, so that it is at a convenient configuration for grasping an 

object of interest, is one of the most difficult sub-activities [34]. Robots, on the other hand, are good at 
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following trajectories accurately, quickly and in a more stable manner, once the trajectory is known. This 

applies to translational as well as rotational motions, and for linear as well as curved trajectories. Robots 

do not get tired or frustrated, neither do they experience fatigue. Thus, human abilities and robot 

capabilities must be combined in such a way, that they complement each other to collaboratively enable 

task execution in an efficient manner. 

To make teleoperation easier, various computer mediated techniques such as virtual fixtures [35], 

potential fields [36] etc. have been developed. These techniques assist the operator by guiding the 

motion of the robot towards the target. In this manner, these techniques reduce the operator’s workload 

and increase their task performance. In order to determine the appropriate trajectory and hence the 

direction of guidance, researchers have made use of motion intention recognition [37]. The tasks 

executed in [37] were simple linear trajectory following tasks. 

Other than the LfD techniques mentioned previously, there are several works in which humans 

have been involved in the loop for grasping. In these works, unlike the LfD methods, the involvement of 

the human is during the task execution rather than in the offline stage. Human input has enabled robotic 

vision systems to interpret a scene better by helping the system to segment and/or recognize objects [38], 

[39]. Once an object is recognized, an autonomous planner would evaluate the grasp on the object and 

grasp would ensue. Better grasp success rates were obtained when the human was involved in the 

grasping process than when the grasp was executed autonomously. In [3] and [40], the human points to 

the object of interest using a laser pointer and the robot autonomously completes the grasp. Only one 

grasp configuration and objects on flat surfaces were considered. In [41], a human was involved in the 

loop in scenarios when the robot failed to perform a grasp autonomously. In these cases, the human 

would interact with a virtual world, which was a replica of the real world, using a mouse. The human 

would locate and orient the virtual gripper at a desired grasp configuration over the virtual object of 

interest, by operating one DOF at a time. The physical robot would then complete the grasp 

autonomously. The main drawback of this system was that the user could operate only one DOF at a 

time, which would be time consuming and tiring for the user.  
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In this work, a novel human-in-the-loop (HitL) grasping strategy, in which the human’s intention 

from motion in teleoperation is used to predict the desired object and grasp configuration, is presented. 

Based on the prediction, the human is assisted to preshape the remote arm gripper over the detected 

object and grasp configuration using scaled teleoperation [42]. The motion of the remote arm is amplified 

in the directions that lead to the desired object and grasp configuration and, attenuated in the directions 

that do not. Motion intention recognition is carried out by processing user motion data through an HMM 

based model. The model is trained by a skilled teleoperator since they have the least errors and tend to 

follow the shortest translation and rotation path. The proposed is intended for use by wheelchair-bound 

individuals who are unable to reach out to surfaces in indoor environments for picking up objects due to 

their disability. They are not necessarily skilled teleoperators.  

1.3 Project Overview 

In order to detect the desired object and grasping pose that the user is interested in, a 

probabilistic model comprising of an exponential distribution model and Hidden Markov Model (HMM) 

theory has been used. [43] provides an excellent reference to the HMM theory. Although the application 

they have discussed is on speech recognition, HMM theory can be applied for any application that can be 

modeled as a doubly embedded stochastic process. We have defined and explained Hidden Markov 

Models (HMM) in section 3.3 of chapter 3. For motion intention recognition using HMMs we first classify 

objects based on shapes and preselect orthogonal grasp configurations for each object class.  

An HMM is associated with each object class and the states of that HMM are the various 

preselected grasp configurations for that shape. The parameters of each HMM are trained by having a 

skilled teleoperator repeatedly preshape from random starting poses to various preselected grasp 

configurations and, by recording and analyzing their teleoperation data. 

Once trained, the intended object and grasping pose is determined by solving the problems 1 and 

3 of the HMM theory [43]. Problem 1 is that of determining the likelihood that a given set of observations 

are from an HMM. Problem 2 is that of determining an optimal state sequence given the HMM and the 
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observations. Thus, the likelihood of the HMM for each object in the environment is determined on the fly 

as the user is teleoperating towards an object. As per the problem 1, the HMM with the highest likelihood 

is the shape and hence the object that is most likely to be the intended object. In other words, that is the 

object of interest based on motion data up to that time instant. Once the object has been determined, 

solve problem 2 is solved to determine the most likely state sequence for that object. The most likely state 

sequence gives the grasp pose that the user intends to grasp the object from. The details of the HMM 

models, the training procedure, the intention recognition algorithms etc. are provided in chapter 3. 

Once the object and grasp configuration are detected, assistance is provided using a concept 

called scaled teleoperation [42]. In scaled teleoperation, the user’s input is broken down into components 

along the desired translation and orientation vectors and, along vectors orthogonal to the desired. The 

components along the desired vectors are scaled up and those along orthogonal directions are scaled 

down. This results in a visible increase in motion of the arm along the desired directions. The increase in 

motion is proportional to how accurately the desired vectors are being followed by the user. The larger the 

deviation, the lower is the motion seen at the remote arm in terms of magnitude. However, the proportion 

of motion along the desired direction is still more than that in the orthogonal directions. This not only 

reduces errors due to deviation from the desired trajectory but also gives the user an intuitive feedback as 

to what direction he/she should be teleoperating towards in order to reach the target faster. This concept 

assists the user to follow a trajectory more accurately and helps them in executing it faster. The amount 

of assistance depends on the magnitude of the scaling factor. If its value is the maximum possible, there 

will be no motion output at the remote arm when the user is moving along a trajectory perfectly orthogonal 

to the desired and any motion in any other direction will produce a motion output proportional to how 

close the input is to the desired. The vector algebra of how this is achieved is explained in section 2.4 of 

chapter 2. 

Moreover, since the grasp poses represent the mental states, they are hidden and hence are 

justified being modeled as HMM states. On the other hand, translation and orientation vectors are visible 

and are justified as being modeled as HMM observations. Thus, the mental states of the user are 

decoded by processing their observed motions through the HMM as the user is teleoperating. When the 
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intention (either object or grasp pose intention) of the user changes, the likelihood values computed by 

the algorithms change and the system detects the new intention. 

In this work, the various grasp configurations of the different objects have been manually 

measured. However, a vision based algorithm that automatically determines the grasp configurations is 

necessary to be integrated with the system.  

The scenario where the user is able to directly observe the environment that needs to be 

manipulated i.e. without any feedback from a camera has been specifically considered. The person 

teleoperating is expected to have decent degree of functionality in at least one of the upper limbs.  

 Objectives 1.3.1

The following are the objectives of this research:  

a) Formulate a methodology for intention recognition based identification of object and grasp 

configuration in a cluttered unstructured environment, with each object having various 

possible grasp configurations. 

b) Implement the devised method on a physical robot that is part of a teleoperation set-up. 

c) Validate the methodology by determining the accuracy of intention recognition.  

d) Compare the developed methodology with other methods and determine the benefits.  

 Contributions 1.3.2

The novel contributions of the proposed work are listed as follows: 

a) The unsolved problem of object and grasp configuration identification, from motion data in 

teleoperation, in a multi-object and multi-grasp configuration set-up, has been solved. 
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b) The Hidden Markov Model (HMM) theory has been utilized in a novel manner by modeling 

objects as HMMs and grasp configurations as states. 

c) Objects can be shuffled around, added or removed from the environment without the need for 

training the system. 

d) A novice user need not train a model for intention recognition i.e. they can use the model 

trained by a skilled teleoperator novice and skilled users to quickly and easily execute a 

grasping task in teleoperation. 

e)  Novice and skilled users are quickly and easily able to execute a grasping task in 

teleoperation using the model trained by a skilled teleoperator. 

f) Scaling has been implemented to assist a user teleoperating the robot in rotation. Thus, the 

user is assisted in all the 6 degrees of freedom (DOF) in space. 

1.4 Previous Work 

 Human-in-the-Loop Grasping 1.4.1

There has been some research on grasping in teleoperation where the human is constantly 

involved. Utsumi et al. [44] assisted the operator, driving an underwater backhoe system, in grasping 

objects by using augmented reality. Objects underwater are not as clearly visible with camera feedback 

as on the ground due to turbidity. As the user touches the partially observable object, it is reconstructed 

virtually and rendered for the user. They call this rendering a haptic image. They then use this model to 

grasp the object. Results for tests in simulation showed good results for haptic image assisted grasping of 

invisible objects. 

In [3] and [45], Kemp et al. have experimented with various interfaces for shared autonomy such 

as button-based teleoperation and, point and click method for reaching tasks. This work involved human 

in grasping tasks depending on the autonomous grasp execution ability of the robot. There was no human 
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involvement when objects could be segmented and the grasp planner could grasp them autonomously. 

When an object could not be segmented, the human specified the grasp pose by manually positioning 

and orienting a virtual model of the robot’s hand on a screen.  When the grasp planner failed to plan a 

path to the object, the human would be involved in manually positioning and orienting the hand at via 

points to guide the robot arm. This method of commanding grasps can work well but, if the user decides 

to grasp a different object or the same object from a different configuration mid-way during a grasping 

task, then the arm will need to be stopped and new grasp pose will need to be entered. Thus, it might be 

cumbersome to change grasp poses on the fly. With our method this change is quicker as the user only 

need teleoperate in a different direction until intention is detected. In their work, the user might have to 

change the view point of the virtual environment to get the mouse pointer to a grasp pose for 

commanding. In our case, the user need not make such adjustment. This saves time and makes control 

easier for the user. 

Srinivasa et al.  have presented an example of human in the loop grasping [38] in which activities 

such as object image acquisition, 3D object reconstruction, surface reconstruction, model evaluation etc. 

are divided between the human and the robot for object recognition and for grasping an object. 

Inexpensive human help from Amazon’s crowdsourcing platform, Mechanical Turk, is utilized. Their 

challenges included quality control, latency, constructing correct interface for workers and, limited 

technical background and attention spans of humans online. They use human input only in object 

recognition. Grasping is autonomous. No assistance in grasping or grasp pose recognition is 

implemented in their work. 

 Human Motion Intention Based Assistance in Teleoperation 1.4.2

The work in the first decade of the 21st century saw new work, not only automatic segmentation 

and recognition of human motion but also using this recognition to assist the human to accomplish the 

task. Motion intention recognition is used to determine the category of sub-task the user intends to 

execute in teleoperation and assist the use in executing the identified sub-task easily and/or quickly. In 

some cases, the sub-tasks are mutually exclusive or independent of each other and the user, at a point in 
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time, may be executing one of the several sub-tasks. In some cases all the individual sub-tasks may 

make up the total task and the user has to execute each in some sequence to complete the task in 

teleoperation. The values of a certain physical quantity usually help in determining the sub-task the user 

is executing at a point in time. These quantities may be discrete or continuous. They may have distinct 

values for each sub-task or the values may overlap in the space of the physical quantity. In the former 

case deterministic models can determine human intention and in the latter case a statistical model needs 

to be used. HMM is the model choice in almost all of these works because of the sequential nature of the 

sub-tasks in most of the works. In cases where the sub-tasks are not sequential, the HMM still gives a 

good classification. The physical quantity that distinguishes the sub-tasks becomes the feature data that 

trains the HMM. Other methods may perform better than HMM or on par with HMM but none of these 

works use any other method to give a comparison with HMM. In some of these works where the sub-

tasks are mutually exclusive, a simpler binary model can be used instead of the HMM. Our work has 

taken a lot of inspiration from these works. We have also used human motion intention recognition to 

identify the sub-task the user is interested in executing and accordingly assist the user in executing it in 

teleoperation. However, our sub-tasks are the various grasping poses that can grasp an object; 

something which has never been implemented using intention based assisted teleoperation. Moreover, 

we are trying to solve the problem of grasping an object with a specific pose of interest using assisted 

teleoperation in a cluttered unstructured environment. The environment has a number of objects of similar 

or different shapes and each with a number of grasping poses that the user can select from. Our 

methodology determines the object and grasping pose of interest as the user is teleoperating and assists 

the user to preshape towards that pose. 

Kragic et al. [37] implemented HMM by using the HMM Toolkit. Used Baum-Welch (B-W) for 

training with initialization from the toolkit and made use of problem 1 of HMM i.e. finding the output 

probability of the model given the partial set of observations or the likelihood that the given observations 

came from a particular model. They did not make use of the Viterbi [43] at all for segmentation or 

recognition. They were the first ones to provide assistance to the operator operating a robotic manipulator 

based on the output from HMM. The assistance was in the form of a virtual fixture that guided the 
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operator through the trajectory. They found an improvement in the operator performance as a result of 

action recognition based assistance. 

Their central idea was to train individual HMMs, one for each sub-task. This contrasted with 

previous implementations by Hannaford and Blake in which only one HMM was trained for the whole task 

and individual states were the sub-tasks. It was, however, similar to the structuring of HMMs in speech 

recognition where each phoneme was modeled as an HMM and a network of such phonemes was used 

to model a word. They sub-tasks that they modeled HMMs as were simple motion primitives, such as 

approach, insert, withdraw, remove etc. (think in the context of a peg-in-hole task). By modeling an HMM 

as a sub-task or motion primitives (they called them gestemes), they were able to define a vocabulary of 

primitives that could be used as a task language (similar to language in speech). Any task using a 

combination of gestemes could then be identified. To identify the sub-tasks they ran all the HMMs in 

parallel and the one with the highest output probability based on partial observations gave the most-likely 

HMM and hence the most likely sub-task or gesteme that the user is executing. This way tasks and 

operator actions could be identified and then appropriate assistance could be provided. Using a set of 

HMMs for a set of corresponding gestemes and being able to identify any task made up of a few or all of 

such gestemes, provided the authors with good scaling or extensibility to the human action identification 

using HMMs. 

In one of their implementations, they modeled peg-in-hole and painting tasks with a subset of 

gestemes from the set that consisted of human actions such as approach, position, insert, withdraw, 

remove and paint. As mentioned, one HMM was designed for each gesteme. Each HMM was a 5-state 

SLR model. The observations were vectors of 7 values viz. 6 force/torque values in the end-effector 

frame (measured from a 6-axis force/torque sensor mounted at the end-effector) and magnitude of 

translation from previous end-effector frame to the current. They trained each HMM individually by 

repeating actions for that gesteme. Then solved problem 1 of HMM, as described earlier, to determine the 

most likely gesteme as the user was executing a task. They used user-segmentation of task, obtained by 

pressing a keyboard spacebar, to compare the automatic segmentation and thus validate the recognition 

algorithm. They obtained a recognition accuracy of 84% for peg-in-hole task and 90% for paint task. Then 
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the gestemes trained for the peg-in-hole task were used in the recognition of the paint task and vice-

versa, the recognition accuracy dropped only by 1.08%. Recognition accuracy is defined as the 

percentage of samples out of the total number of samples, that recognize the same gesteme as that 

provided by the user via spacebar presses.  

The recognition via output probability had latency. This may have caused a delayed detection in 

the change in gesteme and it may have affected the recognition accuracy but, no such point was 

mentioned. The authors did not specify the output probability distribution i.e. discrete or continuous 

(Gaussian or some other kind). 

In the second implementation [46], they used HMM to switch the virtual fixture on or off 

depending on whether the operator is following a pre-specified curved trajectory or leaving it to avoid an 

obstacle. The gestemes were silence (no action), follow the curve or leave the curve. The task was to 

follow a curve while avoiding obstacles on it. The operator followed a virtual 2D curved trajectory and 

avoided obstacles that were displayed on the graphical interface. 

Similar to the first implementation, they used 5-state SLR HMMs to model individual gestemes 

and the HMM with highest output probability value, based on partial observations, is used to determine 

the most likely gesteme. The operator applies forces on the end-effector while executing a gesteme. The 

observations used are absolute values of the projections of the force on the tangent to the closest point 

on the curve and perpendicular to it, the absolute magnitude of the dot product of the force vector and the 

unit vector along the tangent to the closest point on the curve. It is not understood as to why the dot 

product was used as an observation when it is the same as the magnitude of projection on the tangent. 

They obtained an average recognition accuracy of more than 90% when the trained models were tested 

on the same curves and on different similarly shaped curves. They also compared accuracy and times for 

completing a curve following task with one obstacle mid-way suing HMM+VF mode, VF mode and NG (no 

gain) mode. In HMM+VF mode, the VF was switched on or off depending on the HMM recognition of 

curve-following gesteme or leaving the curve gesteme. A hard VF is applied in follow-curve case. In the 

VF mode, a constant soft virtual fixture was applied irrespective of the obstacle, and in NG mode, no 
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assistance was provided. The HMM+VF mode was more accurate and faster than the other two modes, 

although statistical significance could not be proven for all cases. 

In the implementation just described, a simpler binary method could have very well identified the 

user action. This is because the projection magnitudes on the tangent and its perpendicular differ by large 

amounts for each gesteme and a simple comparison between these values would have given the 

gesteme intended by the operator. In the curve-following task, the projection magnitude on the tangent 

was substantially greater than that on its perpendicular and vice-versa when the gesteme is leaving the 

curve. This is true as long as the operator leaves the curve in a direction perpendicular to it. The authors 

mention the idea of changing the compliance of the VF depending on the certainty of the recognized 

action or output probability value. 

Aarno et al. [47] used a combination of K-means clustering, Support Vector Machines (SVMs) 

and HMMs to implement adaptive virtual fixtures based assistance in trajectory following during 

teleoperation. The direction of the virtual fixture changed with the direction of motion in teleoperation so 

that the operator was provided with appropriate assistance. In their implementation, a task consisted of a 

number of sub-tasks or trajectories that are executed in a certain order to accomplish the task. For 

developing the model, the input data is filtered to reduce noise. The input data is in the form of unit 

vectors along the directions of motion and is generated from 3D coordinates as the arm is moving. K-

means clustering estimates the number of sub-tasks or linear trajectories within a task. Each sub-task 

differs from others only in terms of the direction of motion. K-means precluded the need for manual 

labeling of the trajectories. Depending on the number of clusters generated for a task, an SVM is trained 

for each task which gives the probabilities of unit vectors of motion belonging to a certain linear trajectory. 

They justified the use of SVMs by not needing to convert input data to its discrete form and that no 

assumption of a probability distribution will be needed. These SVMs form the observation probabilities for 

each linear trajectory, which is a state in the HMM. Again, a separate HMM is created for each task. The 

HMM, also referred to as a state sequence analyzer, is then trained to learn the most likely linear 

trajectory to be followed for a given task. When executing a task, the HMM is used as an online state 

estimator to determine the state or the linear trajectory that the user is following in teleoperation. The 
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HMM uses the state sequence probability information as well as the SVM modeled state-observation 

probability information to infer the states at each time instance as the arm is moving. Once the linear 

trajectory is known, a virtual fixture along that direction is automatically applied to assist the user. Baum-

Welch algorithm was used for training the state-transition probabilities and initial state probabilities. The 

state with the highest value of δ [43] at every instant was used as the recognized state. As we will see, δ 

for a state is the probability of being in that state over all states at that time instant given the observations 

up to that time instant. For validation of the methodology, each user repeated the task 5 times for training 

the models. When tested on the same task, good segmentation of the linear trajectories was obtained 

and depending on the recognized state, the virtual fixtures were applied automatically to assist the user. 

The accuracy of segmentation was not quantified. The method adapted well to changes in the 

environment, such as increasing the height of the obstacle or adding a new obstacle. In the latter case, if 

the system was unsure about the trajectory the user undertook, to avoid the obstacle, the virtual fixture 

was removed so that the user could avoid the obstacle using unaided teleoperation. The main drawback 

of this method is that the user will only be assisted in the environments that the model is trained on, and it 

is not suitable for unstructured environments. The motivation behind this work was to assist the user in 

various assembly tasks in the manufacturing industry, where the environment is structured. Our method is 

designed to segment the task in unstructured environments. The only information system has is about the 

shape and the pose of the objects in the environment and depending on operator motion, our method 

provides assistance in appropriate direction. We consider translation as well as rotation for assistance 

and segmentation. 

Yu et al. [48] applied a VF, a repulsive potential field or an attractive potential field depending on 

the sub-task viz. following a trajectory, avoiding an obstacle or aligning with a target. The modeling of 

HMM for the task, training and recognition was exactly the same as that in [46]. Baum-Welch (B-W) along 

with forward-backward algorithm is used for training and the HMM with the highest output probability at an 

instant gives the recognized sub-task based on partial observations. Multi-dimensional 5-state Bakis 

HMMs were trained for each sub-task. The components of the input velocity along the trajectory and 

along its perpendicular were used as observations. These continuous values are converted into discrete 

vectors by using FFT and VQ. This pre-processing of the data is similar to that carried out by Yang et al. 
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[49].The observation probabilities are in the form of two matrices of size 256X2, with one column for each 

state. There are two matrices since the HMM is two dimensional. The two dimensions of observations are 

considered independent of each other. 

The concept was tested in a 2D structured virtual environment consisting of predefined 

trajectories, targets and obstacles. The user manipulated a Phantom Omni and received visual feedback 

from the environment displayed on a screen Force-feedback was given via the haptic device. The 

recognition accuracy was increased from 86% to over 90% when the training samples were increased 

from 200 to 500. Accuracy and time for task execution was also evaluated using no assistance and 

motion intention recognition based assistance. When the recognition algorithm detected that the trajectory 

was being followed, a hard VF was applied so that the user can be guided along the trajectory. When 

alignment with a target was detected, attractive forces via the Omni forced the user towards the target 

center. When a direction of motion perpendicular to the trajectory was detected, repulsive forces around 

the obstacle center helped the user avoid the obstacle. An increase in motion accuracy and a decrease in 

execution time were thus observed. Since the difference between the two components of velocity is 

substantial when a trajectory is followed and when the end-effector is moved away from it, a simpler 

binary model could have been used as well. The method could only be applied to a structured 

environment. 

 Human Action Segmentation and Recognition Using Hidden Markov Models 1.4.3

In this section, we provide a review of the works in which a Hidden Markov Model was used to 

either segment a teleoperation task into sub-tasks or develop a model via learning of how a human 

executed a teleoperation task. These works occurred in the 90’s and contribution from two groups can be 

identified viz. the work by Hannaford et al. [50, 51] at Jet Propulsion Lab in California, USA and that by 

Yang et al. [49, 52] at Carnegie Mellon University in Pittsburg, USA. Some of them did identify the sub-

task from a task using HMM theory but none of them made use of the developed model to increase the 

performance of the teleoperation task or assist the human user in executing the task in teleoperation. 
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However, these works were the first ever to use the HMM theory on teleoperation tasks or on human 

action learning and identification. 

Hannaford and Lee [50] were the first to borrow the idea of using HMM theory to segment and 

identify human initiated tasks from its successful application to speech recognition in the 70’s and 80’s. 

They used HMM for automatically segmenting a task executed in teleoperation based on sensor data. 

They wanted the sub-tasks to be tested for performance once they are automatically segmented. 

According to them, even though the force/torque sensor data is produced from a deterministic process, 

randomness was introduced due to exploratory and task identification movements by the human operator. 

They found that the probability densities that encoded the sub-task based on sensor values were 

overlapping. HMM formalism provided robustness in state estimation and allowed uncertainty in sensor 

signals. They took inspiration from techniques in speech recognition that used HMM for recognizing the 

mental states of the speaker. In their case, the force signal was similar to the speech signal in that it was 

a noise-like signal modulated by actions corresponding to mental states. The mental states in their case 

were the sub-tasks the operator was trying to achieve. The task that they segmented and analyzed was 

inserting peg-in-hole and the sub-tasks were moving, inserting, extracting and tapping. The forces were 

measured by a  6-axis force/torque sensor mounted at the end-effector. Only forces along the x-axis were 

considered since these produced a distinct force pattern for each sub-task i.e. zero forces (moving), brief 

positive forces (tapping), predominantly positive forces (inserting) and predominantly negative forces 

(extracting). Thus the HMM was one-dimensional since only a single parameter was considered as an 

observation. 4 Gaussian probability density functions (PDFs) were used for the 4 sub-tasks. They used 

11-states for the HMM and developed a simple left-right (SLR), an augmented left-right (ALR) and ergodic 

model. For definition of various HMM parameters including states and observations and for the 

description of HMM, please refer to Section 2.3. The SLR and ALR models follow the constraints given by 

Equations (1) and (2). 

 𝑎𝑖𝑗  = 0            𝑗 < 𝑖 or 𝑗 >  𝑖 + 1 (1) 

 𝑎𝑖𝑗  = 0            𝑗 < 𝑖 or 𝑗 >  𝑖 + 2 (2) 
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where 𝑖 and 𝑗 refer to the states. Constraint (1) means that the state can transition to itself or to the next 

higher numbered state but to no other state. Constraint (2) means that the state can transition to itself, the 

next two higher numbered states and to no other. In ergodic model, a state can transition to any state. 

The following figures demonstrate the SLR and ALR models diagrammatically. 

 

Figure 1:  Simple left-right (SLR) model of HMM 

 

 

Figure 2:   Augmented left-right (SLR) model of HMM 
 

The 11-states are a series of moves, taps, one insertion and one extraction state. Using 11 states 

instead of 4 for the 4 sub—tasks has the advantage of better-modeled task structure although the state 

transition matrix becomes larger and the more computations are involved. 

The state transition matrix, 𝐴, values and the observation PDF parameters were first initialized 

using heuristics and then determined by finding a local maximum near the heuristic. This was done by 

using maximum likelihood estimate or the Baum-Welch (B-W) algorithm. The initial value for matrix 𝐴 was 

based on the duration of time spent in a state. It was not clear how the mean and variance for the PDF 

were determined. This way of initializing 𝐴 based on duration was not a good representation of state 

transition, the authors mentioned. For optimization, they ran the B-W using 5 experimental datasets with 

the heuristic model as the initialization model. The model generated from these 5 datasets was averaged 

and this averaged model was set as the initialization for the next iteration of another 5 datasets. There 

were 5 iterations done and a convergence was achieved by the 3rd iteration. An interesting property of 

Baum-Welch they mentioned was that the values of elements in matrix A that are zero at initialization 

remain zero throughout the optimization process. 
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Using their developed model, they generated 4 model datasets in the form of force data. They 

found these to be qualitatively similar to the peg-in-hole task. They ran the Viterbi algorithm over these 

model datasets and 4 experimental datasets obtained from actual task executions. The Viterbi algorithm 

was able to segment the task successfully in both cases. Task segmentation on ergodic model was 

inaccurate. The authors said that the sequential structure built from task knowledge was lost in this model 

and was essential for sub-goal tracking. Viterbi on complete datasets resulted in 100% correct 

segmentation for SLR and ALR models whereas the numbers were 0% for SLR and 67% for ALR for 

partial datasets. Partial datasets were created by removing one of the taps which were purposefully 

inserted so that the data could be segmented manually. 

They introduced Normalized Probability Value (NPV) as the average total probability (NPV-alpha) 

and as the average maximum probability (NPV-delta) over time. They were computed from the alpha 

(summation) and delta (maximum probability state argument) measures of probability. Logarithm values 

of NPV were used. An interesting observation was that the values of both NPVs converged with time and 

they were found to be almost equal throughout the time series. The latter meant that the probability of the 

highest likely state is substantially higher than the next highest likely state. Transient values of NPVs 

were observed at the points of state change. Examples of application of this method include fault 

detection, sensor-fusion based task segmentation, time-delay teleoperation failure prevention, and 

telerobotic control. 

Since the experimental datasets used for Viterbi evaluation were chosen to be qualitatively similar 

to the model datasets, the robustness of their model cannot be confirmed. Moreover, they only used one-

dimensional HMM i.e. only the x-axis force data as observations. All the testing was done offline after the 

data from teleoperation was collected and there was no online segmentation or segmentation as the task 

was being performed. Intention of the user was not determined as the user executed the task and task 

segmentation was not used for any performance improvement. 

The same authors extended their work [51] to include multi-dimensional HMM. In this, the 

observation data from more than one sensor was used.  They also modeled and segmented a task in 

which a sub-task could branch into multiple sub-tasks, using Viterbi algorithm and HMM. The 
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development of the HMM was similar to that in their previous work including heuristic initialization and B-

W usage. They used an SLR model. Each sensor data was modeled as a Gaussian PDF and each 

distribution was independent of the other. The joint Gaussian distribution had a diagonal covariance 

matrix. They used x-axis force, z-axis translation and roll torque data as the observations from sensors. 

As part of their results, they compared one-dimensional HMM and multi-dimensional HMM for 

sequence correctness and path correctness. Three multi-dimensional HMMs were compared, one 

employing x-axis force and z-axis translation, one with x-axis force and roll torque and the third with all 

three sensor data. Sequence correctness is the ability of the segmentation algorithm to identify each state 

correctly as the operator is executing it. Path correctness is the ability to detect the right sub-task at the 

branch. The results of segmentation by Viterbi algorithm were the best for multi-dimensional HMM 

employing all three sensors. 100% of tests had both path and sequence correctness in one type of task 

(tested with 6 datasets) and 80% on the second task (tested with 10 datasets). 

They mentioned that the Gaussian PDF for observation probability distribution is not a good 

model for modalities such as z-axis position. That is because its value changes smoothly as the arm 

moves from one point to the next. As a result, average parameter of Gaussian distribution does not 

represent the observation well or will give a higher probability value later in the sub-task. On the other 

hand, an average represents a fast changing modality, such as force, better. They also mentioned an 

interesting technique to reduce the influence of a certain sensor value in determining a state. They said 

that if the variance was increased to a large value for a state-observation relationship, it would result in 

small probability values for that sensor-state combination thus de-weighing the selected sensor signal for 

that state. They added that this technique might also be useful in cases where it is difficult for a sensor to 

discriminate between two states. Inducing a constraint in the observation probability density would make 

it easier to identify one state out of the two. 

Since, the sensors gave a clear indication of the sub-task or state that the user was in, a 

deterministic model could have very well segmented the task. No online segmentation was done, and the 

segmentation was not used to improve the task performance. 
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Yang et al. [52] used HMM theory to model a human skill for a teleoperation task. The task was to 

move the end-effector vertically down, unscrew a threaded component and then move the end-effector 

vertically up. Thus, the motion was predominantly in the z-axis direction. They created three learning 

models or three HMMs for three different representations of the same task. One was based on 7 joint 

angles’ positions through the trajectory as the observations, one on Cartesian z-axis position and one on 

Cartesian z-axis velocity. The observations were multi-dimensional for the joint angles based HMM but 

the dimensions were assumed to be independent of each other. For the other two, the observations were 

one dimensional. Feature vectors were generated from the observations using Short Time Fourier 

Transformation (STFT) and then discretized into symbols using Vector Quantization (VQ) technique. The 

observation probability matrix was of size 256X5, where each column represented the distribution for a 

state. For the multi-dimensional model, there were as many such matrices as the number of dimensions. 

They used a 5-state Bakis model (same as ALR model) HMM and mentioned that the 5 states 

represented the sub-tasks. They did not mention the sub-tasks the states represented or why they used 

Bakis model instead of the SLR or Ergodic model. 

They used a combination of B-W and forward-backward algorithm to determine a maximum 

likelihood estimate of the model. The model was recursively built from 100 operator trials of the task and 

15 iterations per trial. Matrix 𝐴 was initialized such that non-zero probabilities were uniformly distributed 

and matrix 𝐵 had all its probabilities uniformly distributed. Initialization of 𝜋 was not mentioned. The 

forward scores or output probability seemed to converge after six iterations. The converged probability 

increased and decreased with increasing trials in a zigzag manner but the general trend was that the 

probability was increasing as the number of trials increased. Thus the model parameters were constantly 

modified with each trial so that the model tended towards a more likely representation of the human skills 

for the particular teleoperation task. 

It is not clear how they would use the learned skill. Segmentation of the teleoperation task to the 

5 states will not give any information about the task. Thus, the segmentation cannot be used for anything 

beneficial, such as task analysis or performance improvement. They did briefly mention skill transfer to a 

robot using Bayes' rule but did not produce any experimental results. They mentioned an interesting point 
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related to using the logarithm of the values in order to avoid underflow. They claimed that the precision of 

the probability values increase if the base of the logarithm is selected closer to 1. Also, the Cartesian 

position profile for their task was approximately the same for all trials but the joint angle trajectory profile 

was different for many joints. This demonstrated that the inverse kinematics computed different solutions 

each time and it could be attributed to the redundancy of their arm. 

In [49], Yang et al. presented their previous work just described but in addition implemented 

gesture recognition using HMM. They mentioned that human mental states are immeasurable similar to 

human actions, and that human actions via teleoperation are stochastic. Thus, this scheme fitted very 

well to an HMM. Although underlying stochastic process is immeasurable, it can be measured indirectly 

through another stochastic process. They represented gestures as a trajectory of points in a 2D plane 

and the gestures were numbers from 1 to 9. The points were time sampled to a common time series 

using interpolation because the X-Windows interface had irregular time intervals. Implementation of 

learning algorithm was exactly the same as in their earlier work just described. The model for gesture 

recognition was trained on individual, connected characters (those with no inter-character space) and 

series of characters. Either Viterbi algorithm or the forward-backward algorithm was used to recognize. 

They claimed that accurate gesture recognition was obtained. Accuracy of 99.78% was obtained i.e. 449 

out 450 gestures were recognized correctly when the training size was 100 samples. Accuracy was 

91.56% for training a sample size of 10. 

 Grasp Intention Recognition Using Hidden Markov Models 1.4.4

There has been a considerable amount of research for determining grasping postures and 

gestures based on human motion intention recognition. These researches have focused on learning 

multi-DOF human hand motion while grasping various objects using standard grasping postures. A data 

glove was worn to record the human hand motion. Once learned, human hand motion intention was 

determined by running test grasps through the model and the accuracy of the recognition was measured 

using the output grasp produced in simulation. The main difference of our work from these works is that 

they are interested in determining hand posture for grasping whereas we are interested in determining the 
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end-effector configuration for grasping. All of these research works are in the Programming by 

Demonstration (PbD) realm where human movement demonstrates a grasp to the robot, which learns 

and reproduces. Our implementation is in the teleoperation realm where the replication of motion is 

almost instant. None of these works were concerned with how soon the intention was determined. They 

were also not concerned about the change (increase) in accuracy along the trajectory as the desired 

posture was approached. For assisting the user to grasp an object, rate of intention recognition needs to 

be considered.  We are interested in how soon is the system able to determine the intention so that the 

user can be assisted towards the desired grasp pose. These implementations do not provide any 

assistance to the user. In fact assistance is difficult to achieve unless the gripper for replication is 

kinematically similar to the one using which the model was trained. A kinematic mapping between the two 

hands is needed but this is not proposed or tested in any of these implementations. None demonstrate 

any replication of grasping posture on a robotic hand or arm. Our goal, on the other hand, is to provide 

assistance based on the intended grasping pose the user is interested in. Moreover, these works dealt 

with a multi-DOF hand which is a complicated system. Their focus is on the grasping posture of the hand 

and not on the objects. We, on the other hand, deal with grasping pose and not the posture making our 

system simpler as far as the volume of data is concerned. Also, out methodology is object centric and the 

grasping pose comes into play when the object class is determined. Thus, the comparison of the two 

methods has little relevance. Even though the two methods are for determining grasp intention, our 

method is focused on quicker determination of the end-effector configuration for assistance in 

teleoperation whereas those in the literature are focused on determining finger and palm postures for 

replicating grasps by observing human grasps. An account of such works from the literature is given next. 

Kragic et al. [53] used HMM to determine human hand grasping postures for grasping objects. 

The HMM was developed by recording human fingertip pose data as the hand was grasping objects with 

hand postures based on Cutkosky’s taxonomy. The data was recorded by using Flock of Birds sensor 

mounted on three fingertips and one mounted on the palm for reference. An HMM was developed for 

each posture and each grasping task had to be conducted in a fixed sequence viz. open hand and 

prepare, approach and, close hand. Five states were used for each HMM, Baum-Welch was used for 

training and output probability was used for determining the grasping posture. Another method created a 
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model by recording the end-effector pose and velocity for each grasp posture and made the trajectories 

time, space and scale invariant. This model was not HMM based. They found out that the HMM method 

performed better grasp recognition than the other method and a hybrid method was the best. They 

obtained a grasp recognition accuracy rate of about 100% when the same user trained and tested and 

that of about 65% when a user trained and a different one tested for the 10 grasp posture types. Grasp 

intention recognition rate and accuracy were also determined for five of the grasp postures and for the 

first part of the grasp sequence. Grasp recognition accuracy of 95% was achieved at 60% grasp 

completion for a single user case and 90% to 95% was achieved at 80% grasp completion for a multiple 

user case. Grasp recognition accuracy is the fraction of grasps correctly determined by the algorithm. 

Even though their states have a physical meaning i.e. states are grasp postures, the method of selecting 

the number of states per HMM is not convincing. They selected five states per HMM since they found fifty 

clusters of observations and there were ten postures. The methodology of grasp recognition was not 

tested on a robot and no explanation of how it can be implemented was given. In order to implement on a 

robotic hand the DOF of the human and the robotic hand need to be mapped and the accuracy of the 

method will depend on that. Accuracy was found to depend on the mounting locations of the sensors and 

the variations in grasping the same object by the same user. Sensor errors of 1 cm. to 2 cm. were 

reported. Though tests on part of the grasping sequence were done to determine the rate of intention 

recognition, the focus of this work is on grasp recognition and not the speed of recognition. 

Ferguson and Dunlop [54] used EMG signals generated from the forearm and hand movements 

to identify grasp by training a statistical model. They used statistical clustering based on Mahalanobis 

distance to identify grasps postures from electromyography (EMG) signals generated from the forearm. 

The signals were measured from the electrodes mounted on the forearm. They used Vuskovic’s grasp 

taxonomy. Noise errors and errors due to mounting variations of the EMG electrodes on the forearm were 

resolved. EMG signals in the frequency domain were used as feature data due to high volume of data. 

Fast Fourier transform (FFT) was used for feature extraction. They reported a success rate of 75 to 80%. 

However, the authors did not mention any specific test plans or methods on which they based their 

experiments. The authors also mentioned that that the method was replicated on a robotic hand. But, the 

type of robotic hand used for replicating the method was not mentioned. 
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Bernardin [55] used an HMM based method to determine 12 grasp postures from Kakamura’s 

grasp taxonomy. The feature vector for the HMM comprised of thirty values viz. 16 joint angles from the 

cyber glove worn on the hand, thirteen pressure values from tactile sensors mounted on the glove and 

the highest pressure value from the tactile sensor. The tactile sensors gave the contact points for 

grasping and their values were passed through a low pass filter to reduce the noise. There was an HMM 

for each grasping posture with additional ones for garbage movements, release operation and silence. 

Each HMM had 9 states. Baum-Welch algorithm was used for training and Viterbi algorithm was used for 

intention recognition. Training and testing was done by asking the users to execute a sequence of grasps, 

each grasp having a different grasping posture. They called this a composite HMM. Classification 

accuracy was measured by testing grasp sequences on 4 subjects on a variety of objects. They achieved 

an accuracy of about 85% for the case in which the same user’s data was used to train and test the 

model and about 92% for the case in which a user trained model was tested on another user. A manual 

post-processing step was used to improve the classification accuracy. They listed a number of factors that 

they thought might be responsible for poor accuracy viz. lack of calibration for all users, hand size, 

manner of putting the glove, and inconsistencies in motion such as hesitations and so on. Again for this 

method to be used for grasping using a robotic hand, kinematic mapping is necessary. No results on a 

robotic hand were demonstrated. 

Kang and Ikeuchi [56] used ink marks on the user’s hands and their impressions on objects from 

grasping them for geometrically measuring grasp parameters. Static range and intensity images were 

used to measure parameters and classify grasps. They obtained good recognition rates. No 

demonstration on a robotic hand for replicating the grasp was reported. 

Palm and Iliev [57] compared three methods for grasp recognition viz. time clustering based 

model, fuzzy based, and a hybrid HMM and fuzzy based. Feature data for each of the methods was in the 

form of finger joint angle trajectories captured using a data glove. The hand model consisted of 5 fingers 

with 3 joints per finger. Cutkosy’s and Iberall’s taxonomy was used for grasp postures. Their time cluster 

based model was not time and space invariant thereby requiring a fixed environment set-up w.r.t. object 

pose, hand initial and final pose, and a number of via-points in the trajectory. Their fuzzy model only 
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works for a particular sequence of grasps and needs to be retrained for a different sequence. For their 

HMM, they have discretized the continuous observations by picking up intermediate poses from the 

trajectory lending the HMM inaccurate at points along the trajectory not part of discretization. Simulation 

results in a structured set-up show that time clustering performed better than other methods. 

Ju et al. [58] have done work very similar to Palm and Iliev. Instead of fuzzy clustering they have 

used a Gaussian Mixture Model (GMM). Finger joint angle trajectory, captured using a data glove with 19 

sensor values, is used as input features. Their model is again not time invariant. As per results in 

simulation, HMM performs the poorest and according to the authors, this is due to lack of sufficient 

training data.  
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Chapter 2: Arm Kinematics, Control and Teleoperation 

In this chapter, a brief introduction to the arm kinematics and control is given. For a detailed 

description on the theory of forward kinematics and transformation matrix algebra, the reader is requested 

to refer to the text by John Craig [59]. For a detailed description on the remote arm design, construction, 

inverse kinematics and optimization, the reader is requested to refer to [60]. We will follow the convention 

from the text by John Craig to describe any kinematic equations and mathematical quantities. Next we 

mention the improvements in joint limit avoidance implementation. We also briefly describe the master 

device used in our experiments and present the ensuing telemanipulation control. The last section 

includes the theory on scaled teleoperation concept that we have implemented for assistance in 

translation and rotation. 

2.1 Remote Arm Frames and Forward Kinematics  

Kinematics of an object is the mathematical description of its position and the higher derivatives 

of position, like velocity and acceleration, without regards to the forces causing the motion. The location 

of an object in the Euclidean space is described by six independent parameters – three for position and 

three for orientation. These are represented in the form of Cartesian x-y-z frames and are collectively 

known as pose (position and orientation). Each parameter also represents a degree of freedom (DOF). 

The position is generally represented by x, y and z symbols whereas the orientation by (𝛼,𝛽,𝛾) or roll, 

pitch and yaw. Robotic arms are generally in the form of open-ended kinematic chains and comprise of 

rotary or prismatic joints. These joints are connected to each other via rigid links. A Cartesian frame is 

assigned to each joint and its origin is located at the center of the joint. A certain convention is followed 

for assigning the frames [59], but a frame can be assigned in more than one ways. The relation between 
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two consecutive joints is described by D-H parameters [61], which are a set of standard linear and 

angular distance parameters. Depending on the assigned frame, there can be more than one D-H 

parameter sets. The relation between two consecutive joints can be encoded is in the form of a 

transformation matrix, which can be generated from D-H parameters [59]. In this way, a transformation 

matrix describes the pose of a joint frame with respect to the previous. In the case of a robotic arm with all 

rotary joints, the only variables are the angular distance parameters from the D-H set. The last frame in 

the kinematic chain is known as the end-effector and the angular distance parameter is known as joint 

angle. Forward kinematics of an arm is the process of determining the pose of the end-effector from the 

joint angles of all the joints. Forward kinematics is carried out by successive multiplication of the 

transformation matrices, starting from the base joint of the arm and working towards the last joint in the 

kinematic chain.  

Forward kinematics can be also used to determine the pose of all the joints and links of the arm 

but generally the description of the pose of the end-effector is sufficient. This is because the end-effector 

is the most important joint for the execution of a task. A tool or a hand is mounted on the end-effector and 

these are the main elements used to execute any task. The task can be holding a brush for brushing the 

teeth or grasping an object with the hand. For moving the tool along a trajectory or grasping with the 

hand, it is important to know where the end-effector is in the workspace. Knowing the pose of the end-

effector also helps to avoid collisions. Determining the pose of the remaining joints and links of the arm 

can be useful for obstacle avoidance. Forward kinematics also helps in determining the pose of the 

objects in the environment by combining information from a depth sensor like a laser range finder or an 

RGBD vision system. This is because the sensor can determine the pose of the object with respect to 

itself, and since the pose of the end-effector is already known with respect to the base, the pose of the 

object can be computed with respect to the base from transformation matrix equations. When the arm is 

in motion, forward kinematic can be carried out by querying the encoder angles at each time instant as 

the arm is moving. Forward kinematics is also used to generate a more accurate trajectory. This is 

because, often while traversing a trajectory, the arm does not move to the commanded points at each 

instant. Arm modeling errors and motor errors are responsible for this inaccuracy. Thus, the pose from 

forward kinematics determined from encoder feedback can be used to find out the true pose of the arm 
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and then move to the next commanded point. The result is a more accurate tracking of the generated 

trajectory [34].The D-H parameters of the7 DOF arm we have used in our test-bed are given in Table 1.  

Figure 3 shows the frames assigned to each joint and the corresponding D-H parameters. All the joints in 

the robot are revolute joints. It was designed at University of South Florida’s Center for Assistive, 

Rehabilitation and Robotics Technologies [62]. Complete details of the arm are included in [60]. 

 

Figure 3: Cartesian frame assignments and DH parameters for the 7 DOF robotic arm 

Table 1: DH parameters of the 7 DOF robotic arm 

Link i ∝𝑖−1  𝑎𝑖−1 𝑑𝑖 (mm) 𝜃𝑖 

1 -90o 0 102 𝜃1 

2 90o 0 133 𝜃2 

3 -90o 0 502 𝜃3 

4 90o 0 130 𝜃4 

5 -90o 0 387.7 𝜃5 

6 90o 0 -11.8 𝜃6 

7 -90o 0 361 𝜃7 
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Link 𝑑7 actually measures to 161 mm. However, there is an electronic gripper attached to this 

link. The gripper’s frame has the same orientation as joint 7 and it does not change as the arm is being 

teleoperated. When a user is teleoperates, she imagines the end-effector reference as the center of the 

gripper. Therefore, the distance between the end point of joint 7 and gripper center is added to 𝑑7 to yield 

361 as the total length of 𝑑7. Thus, the inverse kinematics gives solutions compatible with user’s 

perception of the arm. Moreover 𝑑5 and 𝑑6 have been modified to account for the new 90 deg. gear-box 

that was installed on joint 6.  With the old gearbox (currently on joint 4) they were 375 and 0 respectively. 

2.2 Inverse Kinematics 

As mentioned earlier, inverse kinematics solves the problem of determining the joint angles given 

the end-effector pose. Thus, it is the inverse of the forward kinematics problem.  Given the start and the 

end pose of a trajectory, inverse kinematics helps to determine the joint angles that the motors at each 

joint need to be commanded, to complete the trajectory. Trajectories are specified in terms of end-effector 

poses rather than joint angles because it is intuitive for a human to specify a trajectory in Cartesian space 

rather than joint space. However, drive motors need joint angles’ information to move the joints. Hence, 

inverse kinematics is very important for trajectory generation and general motion control of a robotic arm.  

Inverse kinematics can be solved in a number of ways viz. closed form solutions, geometric 

solutions, numerical methods etc. Closed-form solutions are specific to specific arms and can only be 

used for that particular arm design. This is because their solution is based on the kinematics of the arm 

i.e. frame assignment and DH parameters and every arm has a different kinematic structure. A more 

general method to solve inverse kinematics is the Resolved Rate method [63], which we use in our 

implementation. This method employs the inverse of the Jacobian for solving the inverse kinematics. The 

inputs to the algorithm are the differential end-effector pose between two trajectory points and the 

Jacobian. The outputs are the joint angle values needed by motors to move the end-effector to the next 

point in the trajectory. Every arm model has a different Jacobian but once the Jacobian is obtained, 

inverse kinematics using the resolved rate method is the same for any arm.  The inverse of the Jacobian 

does not exist for redundant arms since inverse of only square matrices exists and, the Jacobian of 
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redundant arms is not a square matrix. Pseudo-inverse of the Jacobian is used in these cases. Because 

the solution using the inverse and the pseudo-inverse of the Jacobian fails at certain points, approximate 

solutions are used for trajectories near those points. The points are called singular points and at these 

points the determinant of the Jacobian evaluates to zero. As a result the inverse of the Jacobian is infinity 

and the joint rates assume very high values. The arm motion becomes unstable, uncontrollable and 

dangerous. To avoid singularities singularity-robust inverse [67] of the Jacobian are used for solving 

inverse kinematics. The joint position error is increased at the expense of reducing joint velocities at and 

near singularities. Thus if singularity is approached while following a trajectory, the arm will minimally 

deviate from the commanded trajectory instead of attaining a singular configuration. It gets back on to the 

trajectory once the point of singularity has been passed.  

Both pseudo-inverse and SR-inverse solve for redundancy by optimizing the motion based on 

least norm criterion i.e. minimization of the end-effector velocity errors. Even after least-norm 

optimization, a null space may still exist in case of redundant arms. This redundancy can be resolved by 

using the weighted least norm solution of the SR-inverse of the Jacobian. This is done by adding a weight 

term to the SR-inverse of the Jacobian solution. Using this weight term, motion preference can be given 

to some joints over others to achieve the required motion based on a criterion. One such criterion is joint 

limit avoidance. In this case, weights are added to the joints depending on whether they are approaching 

their joint limits. This prevents the joints from physically hitting their limits and causing damage due to 

collision. 

 Improvements in Joint Limit Avoidance 2.2.1

The block diagram for the information flow for SR-inverse and joint limit avoidance based weight 

least norm solution for inverse kinematics, as it was implemented before the start of this project, is shown 

in the Figure 4. 

A problem with this implementation is that the joint will get locked once it crosses joint limit. We 

now explain how this happens. Imagine that the joint limit is crossed as the arm is moving. This is not the 
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actual joint limit but a software limit that is very close to the actual limit i.e. a little less than actual 𝑞𝑖,max 

and a little more than the actual 𝑞𝑖,min. Now as the arm moves to the next via point, the joint weights are 

calculated based on certain heuristics [67]. The weight on the joint that just crossed the limit will be high 

and so it will not move. Because the joint is out of its limit, and because it did not move, the weight on that 

joint will again evaluate to a high value resulting in it not moving. This goes on repeating for every 

iteration and the joint is locked. To counter this condition, we modify the inverse kinematics computation 

as depicted in the Figure 5. 

 

Figure 4: Block diagram showing information flow for inverse kinematics on the 7 DOF arm using SR-
inverse of the Jacobian and joint-limit avoidance based weighted least norm  

Here, we compute the joint angle rates without the weighted least norm solution. We use just the 

least norm or set the weight matrix to unity. However, we do not use these joint rates to move the arm. In 

fact, based on these we calculate the weights and then compute joint rates using weighted least norm. It 

is these joint rates that are used to move the arm. We must note that SR inverse is used in both the 

steps. Calculating joint rates without weights in the first step lets the algorithm know the direction that 

each joint is moving in, in terms of the joint limit. Using these as the commanded angles (when we 

actually do not command using these), and then assigning weights depending on the heuristics, puts 

weights on the joints that are still trying to exceed the limit. The resulting joint rates will move the arm 
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without allowing any of the joints to exceed their limits and without locking any of the joints, if they have 

already crossed the limit. 

A problem was observed when two of the joints crossed their limits and the arm trajectory (in 

teleoperation) wanted to move in a direction that would have caused these joints’ limits exceeding further. 

Due to the implementation of the above method, it was expected that the arm will move in an erroneous 

direction but continue to move without exceeding any of these joint limits further. Or that the arm will not 

move at all. However, one of these joints’ limits continued to be exceeded progressively. The joints in 

question are joint 2 and 6 and 6 continued to move.  

 

Figure 5: Block diagram of inverse kinematics of the 7 DOF arm using SR-inverse of the Jacobian and the 
modified joint-limit avoidance based weighted least norm, the modified version prevents the joint from 
locking once it crosses the limit. 



www.manaraa.com

34 
 

2.3 Master Device Control and Telemanipulation 

The master device that we used for telemanipulation is a 6 DOF manipulator called Phantom 

Omni from Sensable Technologies [65]. This device is basically used to teleoperate the remote 

manipulator. This is done by manipulating the Omni with hands of the user. Thus translating Omni in its 

Cartesian space along x, y and z directions and orienting it about the x, y and z axes results in the 

movement of the remote arm in the corresponding directions in its own Cartesian space. The details of 

this telemanipulation motion control are explained in the next sub-section. In order to transfer the master 

device motion to the remote arm, the motion of the master device needs to be read and processed. Thus, 

we need to determine the kinematics of the master device in order to obtain, say, its end -effector pose. 

However, in the case of the master device we do not develop the kinematics, as we did in the case of the 

remote manipulator. This is because we use the readily available functions called Application 

Programming Interface (API) that give results such as end-effector poses, when queried. APIs come with 

a library called OpenHaptics library that comes along with the device. The APIs are compatible with 

C/C++ programming environments. For more details on the APIs and the device, please refer [66]. 

 
Figure 6: Phantom Omni manipulator used as a master device and the principal axes of the right-handed 
Cartesian base frame  

This device has a very small footprint and very low inertia which makes it very easy to manipulate 

with the hands. This device requires no finger movement, only sufficient finger strength to hold its stylus 
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(refer Figure 6). For manipulating it, the user mostly needs wrist movement, some elbow movement and 

rare shoulder movement. So, the user must have good functionality and strength, at least in one of the 

upper limbs. We must also mention that we use this device as an impedance type of device i.e. the user 

input force through their hands and arms and the device outputs pose (through values retrieved from a 

program). It can also be used as an admittance type of device i.e. the user inputs pose values for the 

end-effector to move (through the program) and the device outputs force (realized through its movement). 

The device also has two buttons on its stylus that can be used for preprogramming any functions like 

opening and closing a gripper or activating / deactivating control modes of motion. The master device 

also has haptic feedback capabilities for translation i.e. it provides force feedback in translation by using 

the appropriate APIs. This is because the motors in its first three joints provide resistance torque 

depending on the task and control program. However, we do not use any of the haptic feedback 

capabilities and only use kinematic capabilities. Even the usage of kinematics from the Omni is limited to 

forward kinematics. The Omni also has its own real-time thread that runs real-time control loops even on 

non-real-time operating systems like Windows. The loop frequency can be set as 250 Hz, 500Hz or 1000 

Hz in the program. For haptic feedback, a minimum of 1000 Hz is needed. We have selected 500 Hz 

since we do not use haptic feedback. 

 Cartesian Mapping and Communication for Teleoperation 2.3.1

We have mentioned that the Cartesian motion of the Omni in its space is transferred to the 

remote arm space to teleoperate the remote arm. In this section we look at the details of how this is 

implemented. 

One way to teleoperate is by using joint based mapping. The remote arm is a 7 DOF manipulator 

whereas Omni is a 6 DOF manipulator. Joint based mapping, in which one joint on the remote arm is 

moved corresponding to the joint on the master device, is not possible unless one of the joints on the 

remote arm is not used at all. Moreover, due to the different link sizes of the master and remote 

manipulators, the motion of the joints on the remote arm will have to be scaled down. This is especially 

true for the shoulder joints since their link lengths are longer than those of the elbow or the wrist. This will 
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need a lot of trial and error and may result in non-intuitive motion at the remote arm. Also, different 

scaling may be needed for gross motion execution compared to fine motion. On the contrary the motion 

will be very intuitive if the end-effector of the remote arm is moved by the same amounts and in the same 

direction as the master. This is because for human users imagining and representing the motion in 

Cartesian coordinates is more natural and intuitive than in the joint space.  Thus, we have implemented a 

Cartesian mapping of motion control for telemanipulation. This method is also scale invariant since the 

differential joint angles of the remote arm motion will be computed based on its end-effector movements 

i.e. no scaling is required to be implemented.  

In order to move the remote arm using Cartesian based mapping, the differential end-effector 

poses from the master device are retrieved as it is manipulated by the user. These differentials are 

mapped to the remote arm’s frame of motion, which could be base frame, end-effector frame or any other 

frame. Inverse kinematics on the remote arm then yields the joint angles that need to be commanded to 

the joint motors so that it moves corresponding to the master device. This concept is explained in the 

Figure 7. 

The mathematical implementation is now presented. Referring to Section 2.4, the translational 

and rotational velocities of the master end-effector are determined using Equations (8) to (13). These are 

clubbed into the Cartesian velocity vector as in Equation (15) and mapped to the remote arm frame as in 

Equation (16). The velocity vector in the remote arm space 𝑉𝑠 thus computed is the same vector that is 

the input to the SR-inverse of the Jacobian. Inverse kinematics using SR-inverse of the Jacobian thus 

computes the joint angles that need to be commanded to the remote arm motors so that it moves in 

accordance with the master device. Thus, joint angles for the remote arm are computed at every instant 

as the master device is being manipulated.  

The master and remote arm control threads run on the same machine and on separate threads. A 

mutex based queue has been implemented to securely transfer data from master to remote arm. It 

prevents data loss and data corruption. It may not have been necessary to implement a queue if the 

control loop frequencies on the master and remote arm were the same. However, due to the difference in 

the control loop frequencies, secure communication is necessary. 
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Figure 7: Block diagram showing information flow for Cartesian based mapping for teleoperation and its 
connection with inverse kinematics and environment 

We now give details of the mapping matrix 𝑀 from Equation (16) that is used to map the 

Cartesian velocity from the master arm frame to the remote arm frame. 

 Control Frames for Mapping Motion 2.3.2

Mapping is important because it gives the user an idea as to what motion on the master will 

produce a corresponding motion at the slave. While teleoperating a remote robot, it is important that the 

direction of motion input corresponds to the motion direction output that is intuitive to the operator. The 

base frame control and the end-effector frame control are the two frames that are intuitive for 

teleoperating a remote arm.  

2.3.2.1 Base Frame Control 

In base frame control, the motion of the master device is transformed from its base to that of the 

remote arm.  The concept is depicted in two dimensions in the following figure. From the figure we see 

that when the robot is at an initial configuration and is given a command to move forward, it moves from 
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Position 1 to Position 2. When it is oriented at a later time and is commanded to move in the same 

direction, it moves in the same direction. We see that the base frame does not orient with the robot. 

  

Initial configuration Configuration at a later time 

Figure 8: Conceptual figure depicting base frame concept. 

 The mapping matrix 𝑅𝑚𝑠  in Equation (16) for frame mapping for the arms used in our test-bed is 

given by the following equation and the frames are pictorially represented in Figure 9, 

 𝑅𝑚𝑠  = �
0 0 −1
−1
0

0 0
1 0

�  (3)  

  

Figure 9: (Left) Omni base frame (Right) 7 DOF arm base frame 
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2.3.2.2 End-effector Frame Control 

At times, it is desirable to control the motion in teleoperation in terms of the end-effector frame of 

the remote arm while the motion at the master is still in the base frame. End-effector frame is important 

when the motion at the remote arm needs to be generated with the objects in the environment as 

reference. The concept is depicted in the figures below in two dimensions. We see that the reference 

frame orients with the robot. 

The Figure 11 shows the master device base frame and the remote arm end-effector frame. The 

mapping matrix 𝑅𝑚𝑠  for end-effector frame mapping for the arms we have used in our test-bed is given 

below. 

 𝑅𝑆𝑀 = �
1        0      0
0
0

   −1       0
       0     −1

�   (4) 

  

Initial configuration Configuration at a later time 

Figure 10: Conceptual figure depicting end-effector frame concept 

We must note that not only the Cartesian velocity vectors are transformed, but the Jacobian 𝐽 

also needs to be transformed to generate the required joint angles to move the remote arm in its end-

effector frame.  
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Figure 11: Omni base frame (left) and 7 DOF end-effector frame (right) 

2.4 Assistance Using Scaled Teleoperation 

Once the intended preshape pose has been determined, the next step is to assist the user to 

traverse and orient the gripper to align with the desired pose. The assistance is provided using scaled 

teleoperation [42] in which the components of motion along the desired directions are scaled up whereas 

those along the direction perpendicular to the desired are scaled down. In this way any deviations from 

the desired path or trajectory are reduced and movements along the desired direction are amplified. This 

way, the errors due to deviation from the desired path are reduced considerably and the users observe an 

appreciable movement along the desired path. This provides an intuitive visual feedback to the user and 

gives them a cue of the direction along which they should teleoperate to reach the target by making less 

number of movements. The method helps the users to teleoperate towards the desired pose quicker and 

with much ease. This will be confirmed from the results that we will generate from the experiments. The 

motion scaling is carried out along translation as well as rotation directions. The convention for describing 

manipulator kinematics is used from the text by John Craig and the frames used for the calculations are 

the Euclidean frames or Cartesian coordinate frames. 

Let 𝑇𝑖𝑂 and 𝑇𝑓𝑂 represent the initial and final transformation matrices of the end-effector frame with 

respect to the manipulator base frame i.e. the transformation matrices of the end-effector as it moves 
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from an initial pose to a final pose. 𝑇𝑖𝑂 and 𝑇𝑓𝑂 are of the order 4X4 and consist of a 3X3 rotation matrix 

and a 3X1 translation vector, both combined into a 4X4 homogenous transformation matrix. 

 𝑅𝑖𝑂= �

𝑛𝑥𝑖
𝑛𝑦𝑖

𝑜𝑥𝑖 𝑎𝑥𝑖 𝑝𝑥𝑖
𝑜𝑦𝑖 𝑎𝑦𝑖 𝑝𝑦𝑖

𝑛𝑧𝑖
0

𝑜𝑧𝑖
0

𝑎𝑧𝑖
0

𝑝𝑧𝑖
1

� and 𝑅𝑓𝑂= 

⎣
⎢
⎢
⎢
⎡𝑛𝑥𝑓𝑛𝑦𝑓

𝑜𝑥𝑓
𝑎𝑥𝑓 𝑝𝑥𝑓

𝑜𝑦𝑓 𝑎𝑦𝑓 𝑝𝑦𝑓
𝑛𝑧𝑓
0

𝑜𝑧𝑓
0

𝑎𝑧𝑓
0

𝑝𝑧𝑓
1 ⎦
⎥
⎥
⎥
⎤
 (5) 

Let, 𝑣 be a 3X1 vector representing linear velocity of the end-effector frame as it moves from initial point 

to final point and let 𝜔 be the angular velocity. Let 𝑣𝑥, 𝑣𝑦, 𝑣𝑧 be the components of 𝑣 and let 𝜔𝑥, 𝜔𝑦, 𝜔𝑧 be 

the components of 𝜔. Thus, 

 𝑣 = (𝑣𝑥, 𝑣𝑦, 𝑣𝑧) (6) 

 𝜔 = (𝜔𝑥, 𝜔𝑦, 𝜔𝑧) (7) 

𝑣 and 𝜔 are computed as follows. 𝑣 is the Euclidean distance between each of the 𝑥, 𝑦 and 𝑧 components 

of the initial and final frames. 𝜔 is computed by taking the cross-product of each of the 𝑥, 𝑦 and 𝑧 principal 

axis of the initial frame with the corresponding axis of the final frame and summing up the three computed 

vectors into a single vector. Thus, 

 𝑣𝑥 = 𝑝𝑥𝑓 - 𝑝𝑥𝑖 (8) 

 𝑣𝑦 = 𝑝𝑦𝑓 - 𝑝𝑦𝑖 (9) 

 𝑣𝑧 = 𝑝𝑧𝑓 - 𝑝𝑧𝑖 (10) 

 𝜔𝑥 = 0.5 ∗ (𝑜𝑦𝑖 ∗ 𝑜𝑧𝑓 −  𝑜𝑧𝑖 ∗ 𝑜𝑦𝑓 +  𝑛𝑦𝑖 ∗ 𝑛𝑧𝑓 −  𝑛𝑧𝑖 ∗ 𝑛𝑦𝑓 + 𝑎𝑦𝑖 ∗ 𝑎𝑧𝑓 −  𝑎𝑧𝑖 ∗ 𝑎𝑦𝑓) (11) 

 𝜔𝑦 = 0.5 ∗ (𝑜𝑧𝑖 ∗ 𝑜𝑥𝑓 −  𝑜𝑥𝑖 ∗ 𝑜𝑧𝑓 + 𝑛𝑧𝑖 ∗ 𝑛𝑥𝑓 −  𝑛𝑥𝑖 ∗ 𝑛𝑧𝑓 +  𝑎𝑧𝑖 ∗ 𝑎𝑥𝑓 −  𝑎𝑥𝑖 ∗ 𝑎𝑧𝑓) (12) 

 𝜔𝑧 = 0.5 ∗ (𝑜𝑥𝑖 ∗ 𝑜𝑦𝑓 −  𝑜𝑦𝑖 ∗ 𝑜𝑥𝑓 + 𝑛𝑥𝑖 ∗ 𝑛𝑦𝑓 −  𝑛𝑦𝑖 ∗ 𝑛𝑥𝑓 +  𝑎𝑥𝑖 ∗ 𝑎𝑦𝑓 −  𝑎𝑦𝑖 ∗ 𝑎𝑥𝑓  ) (13) 

Equations (11) to (13) above for the computation of angular velocity 𝜔 can also be written in a concise 

form as, 

 𝜔 = 1
2

 (𝑛𝑖 × 𝑛𝑓 + 𝑜𝑖 × 𝑜𝑓 +  𝑎𝑖 × 𝑎𝑓) (14) 



www.manaraa.com

42 
 

Let 𝑉 be the velocity vector that represents linear and angular velocity as a single unit. Thus, 

 𝑉 = 

⎣
⎢
⎢
⎢
⎢
⎡
𝑣𝑥
𝑣𝑦
𝑣𝑧
𝜔𝑥
𝜔𝑦
𝜔𝑧⎦
⎥
⎥
⎥
⎥
⎤

 (15) 

Let 𝑉𝑚 be the velocity generated every time the master manipulator is moved from one point to another by 

the user and let 𝑉𝑠 be the corresponding velocity of the slave manipulator which moves as a result of 

teleoperation. Let 𝑣𝑚, 𝜔𝑚, 𝑣𝑠 and 𝜔𝑠 be the corresponding linear and angular velocities. These vectors are 

generated at every time instant as the slave arm (remote arm) is being teleoperated with the master 

device. 𝑉𝑚 and 𝑉𝑠 are related by a mapping matrix that relates the base frame orientations of the master 

and slave manipulators. Thus, 

 𝑉𝑠 = 𝑀 𝑉𝑚 (16) 

where, 

 𝑀 = � 𝑅𝑚𝑠
1 0 0
0 1 0
0 0 1

1 0 0
0 1 0
0 0 1
𝑅𝑚𝑠

� (17) 

𝑅𝑚𝑠  is the 3X3 rotation matrix that specifies the orientation of the base frame  of the slave manipulator with 

respect to the base frame of the master manipulator. Therefore the mapping matrix 𝑀 is a 6X6 matrix. 

Ordinarily, 𝑉𝑠 is computed at every time instant as the master device is being manipulated by the 

user. Inverse kinematics on the 6X1 velocity vector 𝑉𝑠 gives the joint angles that the slave arm needs to 

be commanded by in order to move by the same amount and in the same direction as the master device. 

(The details of inverse kinematics and mapping matrix values are covered in the chapter on Hardware 

implementation). However, in order to provide assistance in scaling 𝑉𝑠 needs to be modified so that its 

components in the desired directions are amplified. Let this modified form of 𝑉𝑠′. Inverse kinematics on 𝑉𝑠′ 

will lead to scaled motion. We now show how 𝑉𝑠′ is calculated. 



www.manaraa.com

43 
 

 Scaled Teleoperation for Translation 2.4.1

We first explain how we scale the motion in translation. We know from intention recognition 

algorithm the particular preshape pose that the user is interested in. In other words the system knows the 

location to which the end-effector should be traversing in order to align with the desired preshape pose. 

Let the unit vector along the linear velocity vector that defines this desired linear trajectory be 𝑣𝑘. Let 

𝑣𝑙and 𝑣𝑚be the unit vectors perpendicular to 𝑣𝑘 so that 𝑣𝑘, 𝑣𝑙 and 𝑣𝑚 are orthonormal i.e. mutually 

orthogonal unit vectors. In other words, 𝑣𝑘, 𝑣𝑙 and 𝑣𝑚 form an 𝑥, 𝑦 and 𝑧 Cartesian triad. We already have 

𝑣𝑠 which is the linear velocity of the slave due to teleoperation from master device. We must keep in mind 

that 𝑣𝑠 is not a unit vector. Let, 𝑡𝑘, 𝑡𝑙 and 𝑡𝑚 be vectors generated by projecting 𝑣𝑠 on 𝑣𝑘, 𝑣𝑙 and 𝑣𝑚 and 

having the direction along 𝑣𝑘, 𝑣𝑙 and 𝑣𝑚. Therefore,  

 𝑡𝑘 = (𝑣𝑠 . 𝑣𝑘) 𝑣𝑘 (18) 

 𝑡𝑙 = (𝑣𝑠 . 𝑣𝑙) 𝑣𝑙 (19) 

 𝑡𝑚 = (𝑣𝑠 . 𝑣𝑚) 𝑣𝑚 (20) 

Since, 𝑣𝑘 is the desired direction that the user intends to move the remote arm along, we scale the motion 

along 𝑣𝑘 and scale down along 𝑣𝑙 and 𝑣𝑚. Let 𝑠𝑢be the scaling factor for scaling up and 𝑠𝑑be the scaling 

factor for scaling down. We have, 

 𝑠𝑢 ≥ 1 (21) 

 1 ≥ 𝑠𝑑 ≥ 0 (22) 

Let, 𝑡𝑘′, 𝑡𝑙′ and 𝑡𝑚′ be the scaled versions of 𝑡𝑘, 𝑡𝑙 and 𝑡𝑚, such that, 

 𝑡𝑘′  = 𝑠𝑢 𝑡𝑘 (23) 

 𝑡𝑙′ = 𝑠𝑑 𝑡𝑙  (24) 

 𝑡𝑚′  =𝑠𝑑 𝑡𝑚 (25) 

If, however, 𝑡𝑘  is in the direction opposite to that of 𝑣𝑘 i.e. the user is deviating away from the desired, 

then all the three components of projection are scaled down. In this case, we get, 
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 𝑡𝑘′  = 𝑠𝑑 𝑡𝑘 (26) 

 𝑡𝑙′ = 𝑠𝑑 𝑡𝑙  (27) 

 𝑡𝑚′  =𝑠𝑑 𝑡𝑚 (28) 

Thus, the modified version of 𝑣𝑠 is given by the vector sum of 𝑡𝑘′, 𝑡𝑙′ and 𝑡𝑚′. Let us call it 𝑣𝑠′. Thus, 

 𝑣𝑠′ = 𝑡𝑘′ + 𝑡𝑙′ + 𝑡𝑚′ (29) 

𝑣𝑠′ is thus the scaled form of 𝑣𝑠, It is scaled up in the direction of 𝑣𝑘 which is the desired direction for 

translation of the slave arm. The users teleoperating the arm will not only see a change in the direction of 

motion but also a change in the magnitude. The closer the user teleoperates the slave arm along the 

desired direction, the larger is the magnitude of motion. The more the deviation from the desired 

trajectory, the smaller is the magnitude of motion. In this way the user is assisted along the desired 

direction of motion. The concept of scaled teleoperation along a linear trajectory is shown in the figure 

below. For ease of appearance and understanding, the concept is shown in two dimensions only. 

 

Figure 12: Scaled translation concept 

 Scaled Teleoperation for Rotation 2.4.2

The scaled rotation concept is similar to the scaled translation concept. This is because even 

though a rotation in Euclidean space has to be represented by 3X3 matrix of 9 elements, equivalent 

angle-axis form reduces these elements to just 3. Equations (11) to (13), which give a vectorial 

representation of the differential rotation matrices, are derived from equivalent angle-axis form [19]. Thus, 

when the rotation matrix can be represented in the form of a 3X1 angular velocity vector, given by 
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Equations (11) to (13), the calculations for scaling it become similar to those for translation. All we need to 

do is to replace the linear velocity vectors by angular velocities. The motion scaling along orientation is 

explained next. 

We know that 𝜔𝑠 is the angular velocity of the slave end-effector generated after mapping that of 

the master device end-effector 𝜔𝑚 when the master moves from one point to another under user control. 

𝜔𝑠 and 𝜔𝑚 are generated at every time instant as the user is teleoperating and are related by the 

mapping matrix in a manner similar to the linear velocity vectors given by Equation (16). Based on the 

intention recognition, the desired direction of orientation, that the user should be teleoperating in order to 

align the slave arm with the desired preshape pose, is already known. Let 𝜔𝑘 denote a unit vector in that 

direction and it can be calculated using Equations (11) to (13).  Again, 𝜔𝑘 is a 3X1 vector in Euclidean 

space and can be treated like any other vector in the space. Let 𝜔𝑙 and 𝜔𝑚 be unit vectors perpendicular 

to 𝜔𝑘 such that the three vectors are orthonormal and form an 𝑥, 𝑦 and 𝑧 Cartesian triad. 

Let, 𝑟𝑘, 𝑟𝑙 and 𝑟𝑚 be the vectors generated by projecting 𝜔𝑠 over 𝜔𝑘, 𝜔𝑙 and 𝜔𝑚 respectively. We 

must keep in mind that 𝑟𝑘, 𝑟𝑙 and 𝑟𝑚 are not unit vectors. Thus, 

 𝑟𝑘  = (𝜔𝑠 . 𝜔𝑘) 𝜔𝑘  (30) 

 𝑟𝑙  = (𝜔𝑠 . 𝜔𝑙) 𝜔𝑙  (31) 

 𝑟𝑚  = (𝜔𝑠 . 𝜔𝑚) 𝜔𝑚 (32) 

Now, since the desired direction of rotation is along 𝜔𝑘, the component along that direction should be 

increased while those in the perpendicular directions should be decreased. In other words, we have to 

scale 𝑟𝑘 up and scale 𝑟𝑙 and 𝑟𝑚 down. Let 𝑠𝑢 and 𝑠𝑑 be the scale factors for scaling the motion up and 

down. The amount of scaling depends on the amount of assistance that needs to be provided to the user. 

A higher value of 𝑠𝑢 will result in the slave arm having a higher magnitude of motion along the desired 

orientation direction for the same amount of movement of the master. It will also result in the slave arm 

having lesser magnitude of orientation motion when the arm deviates from the desired orientation 

direction. Here too, 𝑠𝑢 and 𝑠𝑑 follow the constraints given by Equation (21) and (22).  
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Let , 𝑟𝑘′, 𝑟𝑙′ and 𝑟𝑚′ be the scaled versions of 𝑟𝑘, 𝑟𝑙 and 𝑟𝑚 so that,  

 𝑟𝑘′  = 𝑠𝑢 𝑟𝑘 (33) 

 𝑟𝑙′ = 𝑠𝑑 𝑟𝑙  (34) 

 𝑟𝑚′  =𝑠𝑑 𝑟𝑚 (35) 

Just like the case in translation, if 𝑟𝑘 is in a direction opposite to that of 𝜔𝑘, i.e. if the user is deviating away 

from the desired rotation path, all the components are scaled down. In this case, we get,  

 𝑟𝑘′  = 𝑠𝑑  𝑟𝑘 (36) 

 𝑟𝑙′ = 𝑠𝑑 𝑟𝑙  (37) 

 𝑟𝑚′  =𝑠𝑑 𝑟𝑚 (38) 

Let, 𝜔𝑠′ be the vector sum of 𝑟𝑘′, 𝑟𝑙′ and 𝑟𝑚′. Thus, 

 𝜔𝑠′ = 𝑟𝑘′ + 𝑟𝑙′ + 𝑟𝑚′ (39) 

𝜔𝑠′ is the modified angular velocity vector that will result in the angular motion of the end-effector scaled 

up in the desired directions. Thus, the users will see the end-effector rotating with a higher angle towards 

the desired pose with scaled teleoperation. The angle is higher when the user orients the slave end-

effector closer to the desired rotation angle. It also results in the end-effector aligning quicker with the 

desired pose. The concept of scaled orientation is shown in the figure below in two dimensions only, for 

the sake of simplicity and understanding. 

 
Figure 13: Scaled rotation concept  
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Chapter 3: Hidden Markov Model - Theory, Design and Implementation 

In this chapter, first the multi-object multi-grasp-configuration identification problem is defined. An 

explanation of the use of Hidden Markov Model (HMM) to model such a problem and determine the 

intended object and grasp configuration is presented. An HMM is formally defined and the various 

parameters that make-up an HMM are listed. A description of the various quantities that make-up the 

feature vector of an HMM and how its various parameters are estimated from training data is presented. 

Next a mention of the use of output probability of an HMM and the Viterbi state sequence, to 

probabilistically determine the desired object and grasp configuration, is made. Finally, the design of the 

HMM used in the project is presented. This includes the various objects we have modeled and the 

specifics of the parameter estimation process. Notes on the implementation of our HMM, which includes 

the user interface developed for testing our algorithm, are presented.  

3.1 Multi-object and Multi-grasp-pose Identification Problem and Hidden Markov Model for 
Motion Intention Recognition  

 

Figure 14: End-effector of a robot and objects from various shape categories with pre-defined grasp 
poses 
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In this sub-section, we give a high-level explanation of identifying the object of interest and the 

grasp pose of interest using Hidden Markov Model (HMM) theory. Consider the environment shown in 

Figure 14. In the figure we see a gripper at an initial pose with its Cartesian frame defined. There are 

objects of general shapes like cylinder, sphere and box. The possible grasping poses for each of those 

objects is shown with gripper jaws surrounding each object. The problem is to identify the object of 

interest and the grasp pose for grasping the object, using motion data, as the user is teleoperating 

towards the object.  

As mentioned in chapter 1, in order to identify an object of interest in a cluttered environment, the 

first step we take is to categorize the objects into classes based on their shapes. Let us assume, for the 

purpose of developing the theory, that we select three basic shapes, a cylinder, a sphere and a box, as 

the object classes. Thus, any object that approximates one of these shapes can be an object of interest. 

We also define pre-set grasp poses for each object shape. Thus, from Figure 14, the cylinder can be 

grasped in certain pre-defined grasp configurations. The same is true for the other shapes. We then 

develop a model for each object shape by training it based on human motion data. Thus a model is 

developed, one for each, the cylinder, the sphere and the box. The human motion data used for training is 

based on the translation and orientation vectors that are generated as the user is teleoperating. For 

training, a skilled teleoperator is asked to repeatedly preshape in teleoperation to each of the grasping 

poses for a particular shape. Each time the teleoperator starts from a random starting pose of the end-

effector and from different approach directions to the object. Thus, a model for that particular shape is 

developed. The states of the model are the various grasp configurations of the object and the 

observations are the projections of incremental master translation and rotation vectors onto each of the 

remote arm reference vectors. Reference vectors are the ideal translation and rotation vectors from the 

current remote arm end-effector pose to each of the grasp configurations for the object for which the 

HMM is being trained. We have observed that the distribution of the projections on the desired reference 

vectors is approximately exponential in nature. Thus, we have used approximated exponential distribution 

as our observation probability distribution for each HMM.  This process of developing the model is 

repeated for all shapes. The models for the shapes differ by the parameters of the exponential distribution 

and by the states. For intention recognition, the likelihood of the HMMs for each object, as the user is 



www.manaraa.com

49 
 

teleoperating towards the desired object, is determined. From Figure 14, the likelihood of the 5 HMMs 

(since there are 5 objects) is computed as the user is teleoperating. We must note that although the two 

cylindrical objects in the Figure 14 have the same model viz. the one trained for a cylinder, they are still 

two different models. These two models for the same object shape differ based on the pose of the two 

cylindrical objects in the environment. Because the poses of the two cylindrical objects are different, the 

observation probability is higher for the HMM associated with the cylinder that is being approached. This 

provides a clear indication of the intended cylinder and hence its grasp configurations. If the pose of the 

cylinders is changed, then the HMM probability computations will change depending on the pose and will 

compute intentions based on the new poses. Also, a model for each shape needs to be trained only once 

i.e. the two HMMs for the two cylindrical objects need not be trained twice. The same motion data, based 

on translation and orientation vectors, is used for intention recognition. The object whose HMM gives the 

highest likelihood based on the motion data up to that point in time is the one that the user is interested in 

traversing towards. 

 

Figure 15: Desired grasp configurations along various axes for an object 

Once the object of interest has been determined, the next step is to determine the grasping pose 

that the user is interested in grasping the object with in teleoperation. If the user is only interested in 

indicating the object of interest to the robot, then the next step is not needed to be computed. It has been 

already mentioned that the various grasp poses are modeled as the states of the HMM for the selected 



www.manaraa.com

50 
 

object shape. States will be explained later in the chapter. For now, the readers should understand that 

states are those quantities in the HMM that are not visible or measurable using direct means. For 

example, human mental states are invisible and cannot be measured. The beauty of the HMM lies in 

determining the invisible states from observable or measurable data. The observable data are called 

observations and in our method, the motion data based on translation and orientation vectors are the 

observations. As mentioned in the last paragraph, the observations are the projections of the translation 

and orientation vectors onto the reference vectors. Assume that a cylindrical object is the object of 

interest. Let the various pre-defined grasp poses for this shape be represented as in Figure 15. The figure 

shows the initial end-effector pose with subscript 𝑖 and the possible final end-effector poses with subscript 

𝑓. For each of these possible grasp poses, the frame of the end-effector needs to be aligned with that of 

the object frame at the grasp point. For simpler cases, aligning the z-axis of the end-effector frame, 𝑧𝑖, 

with the alignment vectors, 𝐶1, 𝐶2, 𝐶3, … 𝐶𝑁, is sufficient. Thus, at each grasp point, there is an alignment 

frame. The z-axis of this frame is called the alignment vector. 

As the user is teleoperating towards a grasp pose for the selected object, the most likely state 

sequence is determined using motion data. Since the grasp poses represent state of the HMM, the most 

likely state sequence gives the grasp pose that the user has a likelihood of grasping the object from. In 

this way we determine the grasp pose of interest for the user. The details of this method will be explained 

later in the chapter. 

The HMM for a shape needs to be trained only once by a skilled teleoperator. Any number of 

objects of the trained shapes can be added to our environment or object can be removed from the test 

environment. Re-training is not needed in either of these cases. This makes the method scalable and 

suitable for unstructured environments. The shape and pose of the objects in the environment needs to 

be recognized automatically. An RGB-D based vision system is currently being developed in our lab that 

will serve this purpose. In this implementation, it is assumed that this information is already available to 

the system before starting a grasping task. A limitation of the proposed method is that it will only work for 

objects whose shapes closely match to one in our shape set. If an object is encountered whose shape 

does not match closely to any shape in the set, then the method will return grasp pose that may not give 
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a robust grasp. However, that shape can be trained and then included in our method. We now give details 

of the Hidden Markov Models (HMM) and explain how we solve our problems using HMM theory.  

3.2 Why a Hidden Markov Model? 

A Hidden Markov Model is a type of statistical model that models a stochastic process. They have 

been applied to a number of real-world processes like speech recognition. The process of teleoperating to 

a desired orientation is stochastic in nature. The randomness of our process comes from the fact that a 

human will produce errors in motion when teleoperating to traverse the end-effector along a linear 

trajectory or when orienting it to a desired configuration. During teleoperation, the user deviates from their 

path unless guided by a virtual fixture. The errors in the case of orientation are more pronounced than 

those in the case of translation. So even if the user is teleoperating the end-effector along a trajectory or 

aligning it with a preshape configuration, at some points during the task the user might seem to be 

teleoperating along a different trajectory or preshape configuration due to errors in motion. Thus, at any 

point during teleoperation, there is a probability or likelihood associated with the user trying to guide the 

end-effector to a certain target. The motion from teleoperation has been modeled as an exponential 

distribution. This means that the histogram of projections of incremental translational vectors on the 

reference vector over the length of the trajectory is exponential. The reference trajectory is the ideal 

(shortest straight line) trajectory that would lead to the target. The same is true for orientation vectors. We 

need a system that models the errors in motion and generates a likelihood (or probability) of the desired 

preshape configuration out of the several possible ones that the user is trying to teleoperate to. HMM with 

exponential distribution model is the stochastic model of our choice because of its suitability to the 

application to our problem. This is explained as follows: 

a) Since the motion from teleoperation follows an exponential distribution, we could use an 

exponential probability distribution function (PDF) to find the probability of translating to a 

point on an object and orienting to preshape with a specific configuration on it. There is 

an exponential PDF for each of the preshape configurations. An HMM combines all the 

PDFs into one model. Instead of comparing the various PDFs with each other to 



www.manaraa.com

52 
 

determine the preshape configuration of interest, all the PDFs are combined into a single 

structure. If we consider the motion data from teleoperation as observations of the HMM, 

then the observation probability distribution can be comprised of each of the exponential 

PDFs for each preshape. Each preshape will then lend itself as a state of the HMM. HMM 

theory will be introduced in the next section and it will define states and observations and 

will also explain the structure of an HMM. 

b) Only using the output of the exponential PDF may not give the right intention if the user 

deviates from the trajectory by a large amount. Thus, a method is needed that will detect 

the change in intention not by erroneous movements but by the user trying to deviate 

from the trajectory on purpose. It should be able to gradually change the intention by 

steadily increasing the confidence level of the new intention. Viterbi decoding lends to 

this requirement. Viterbi decoding will be explained in a later section in detail. 

c) In order to identify the object of interest from a number of them in an environment, a 

method is needed that will compute the likelihood of the user teleoperating to all objects 

present and determine the one which has the highest likelihood.. By associating an HMM 

with every object, the HMM with the highest likelihood of occurrence gives the most likely 

object that the user is teleoperating towards. Determining the HMM that is most likely to 

occur out of a number of them, is a well-defined problem that can be solved using the 

HMM theory.   

d) Human intention or mental states are invisible and cannot be measured. A method is 

needed to determine the invisible states from observable or measurable data. If we 

consider the motion data as observations and grasp poses as states, then HMM can be 

used to determine grasp poses or human intention from motion data. 

Moreover, our process obeys the following constraints of a discrete state first-order Markov chain. 

The states are not dependent on time and the observations at any point in time are also dependent on the 

state at that instant only. 
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3.3 Hidden Markov Model Theory 

As mentioned previously, a Hidden Markov Model (HMM) models a doubly embedded stochastic 

process. The states are hidden whereas the observations are visible. It has also been mentioned that, in 

our model, the grasp configurations are modeled as states and the projections of translation and rotation 

vectors, as observations. The main elements that make up a Hidden Markov Model and describe its 

structure are its initial probability distribution, state transition probability distribution and observation 

probability distribution [43]. 

a) Initial State Distribution: Let as 𝑆 = [𝑆1, 𝑆2, 𝑆3, … 𝑆𝑁]  represent the set of states of an 

HMM. The initial state distribution gives the probability of the system being in a certain 

state, for all states, at the instant the process begins. It is denoted by  π = { π𝑖} where, 

 𝜋𝑖  = 𝑃[𝑞1=𝑆𝑖],                        1≤  𝑖 ≤ 𝑁 (40) 

b) State Transition Probability Distribution: As mentioned earlier, the state transition 

probability distribution gives the probabilistic relation or interdependence among the 

various states. Generally, these are discrete probability values as the states are discrete 

in most applications. They are denoted by  𝐴={ 𝑎𝑖𝑗} where 

 𝑎𝑖𝑗 = 𝑃[𝑞𝑡+1=𝑆𝑗|𝑞𝑡=𝑆𝑖],            1 ≤ 𝑖, 𝑗 ≤  𝑁 (41) 

For those cases, where it is not possible to transition from state 𝑖 to state 𝑗, 𝑎𝑖𝑗=0, otherwise 𝑎𝑖𝑗≥ 

0. Also, as stated earlier Σ𝑗=1
𝑁  𝑎𝑖𝑗= 1 i.e the sum of the probabilities of transitioning from one state to all 

the other states is 1.  

c) Observation Probability Distribution: The observation probability distribution for a state 

gives the probabilistic relationship between that state and all the observations. It exists 

for each state. It can be discrete or it can be a continuous probability distribution 

depending on whether the observations are discrete or continuous. For discrete set of 
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observation symbols 𝑉 = [𝑣1, 𝑣2, 𝑣3, … 𝑣𝑀], the observation probability distribution at 

state 𝑗, 𝐵 = {𝑏𝑗(𝑘)}, where 

 𝑏𝑗(𝑘) = 𝑃[𝑣𝑘 at 𝑡|𝑞𝑡=𝑆𝑖]          1≤  𝑗 ≤ 𝑁  

                                                             1≤ 𝑘 ≤ 𝑀 (42) 

The observations at various time instants are represented as 𝑂1, 𝑂2, …  𝑂𝑇, where at a certain time 

instant 𝑡 the observation 𝑂𝑡 can have any value from the set 𝑉. For the case in which the observations are 

continuous, 𝐵 is computed as a probability density function (PDF), 

 𝑏𝑗(O) = N(O, 𝜇𝑗, Σ𝑗) (43) 

where O is the observation vector being modeled, N is a PDF usually a Gaussian [43], 𝜇𝑗 is the mean and 

Σ𝑗 is the covariance for the distribution for 𝑗th state. N can represent any form of probability distribution. 

This is decided based on the distribution of the observations over time. Thus, to completely specify an 

HMM, one needs to specify the number of states and observations 𝑁 and 𝑀, observation symbols and 

state symbols 𝑉 and 𝑆, and the probability measures π, 𝐴 and 𝐵. The probability measures are often 

written in a compact form,  

 𝜆 = (π, 𝐴, 𝐵) (44) 

Once an HMM is defined, it can be used to solve three basic problems [43]. The first problem that 

the HMM solves is that of determining the probability that a certain sequence of observation are produced 

from a certain HMM. The second problem is that of estimating the most likely state sequence given a set 

of observations and the HMM. The third problem is that of determining the parameters of the HMM from a 

given observation and state sequence. For more details on HMM definition, design and implementation, 

the reader is requested to refer to the tutorial on HMM from Rabiner [43]. 
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3.4 Adapting the Hidden Markov Model to Multi-Grasp Pose Identification Problem 

As mentioned previously, a model comprising of exponential distribution and HMM will be trained 

for each object class from the motion data generated by teleoperating to various grasp preshape poses 

for that object class. It was also mentioned that the motion data from teleoperation could be used as 

observations and each preshape pose as a state. In this section, we explore the various ways by which 

we make our problem fit the three problems that HMM solves. 

The problem 1 that HMM solves is that, what is the likelihood that the given sequence of 

observations is produced by the given model. In other words, the solution to problem 1 gives a score of 

how well a given model matches the given sequence of observations. This viewpoint is extremely useful 

in our case as it can be used to determine as to which of the HMMs out of the various available ones 

most closely matches the observations. In our case, an HMM is associated with every object and motion 

data are the observations. Thus, based on the motion data, problem 1 can be used to determine the most 

likely object in a cluttered environment that the user is teleoperating towards.   

Problem 2 that the HMM solves gives the optimal state sequence given the observations and the 

model i.e. it gives the state sequence that is most likely to be produced. An HMM has been associated 

with every object and the grasp configurations and motion data have been modeled as states and 

observations respectively. Thus, once the system determines the intended object by solving the problem 

1, the most likely sequence of grasp configurations, as the user is teleoperating, can be determined by 

solving problem 2.  The mean or mode value of this sequence of grasp configurations can be used to 

determine the intended grasp configuration. Viterbi decoding has been used to solve problem 2 [43].  

Problem 3 that the HMM solves estimates the model parameters given the state and observation 

sequences. We can use the solution to this problem to train our model for each object class. This can be 

achieved by teleoperating to a specific grasp configuration several times starting from random poses. 

This will be repeated for all the possible grasp configurations for an object class. As a result, observation 

sequences will be generated and since we are teleoperating to specific known grasp configuration, the 

state sequence is known too. Thus, solution to problem 3 can be used, to estimate the HMM parameters 
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for each object class. Baum-Welch algorithm is a well-known algorithm that gives the solution to problem 

3. However, such a training procedure will be costly due to the number of trials needed for training. If 𝑛 

trials are needed to train a state transition matrix element and if there are 𝑘 grasp configurations for an 

object, the total number of trials needed for training the object’s state transition matrix will be 𝑛𝑘. For 10 

trials and an object with 4 grasp configurations, this number is 10000. Therefore, we assume the values 

of state transition matrix and initial probability distribution. Since no reasonable assumption can be used 

for the parameters of the observation probability distribution, these are estimated by conducting repeated 

trials of teleoperating to each grasp configuration of an object. The process will be discussed later.  

3.5 Hidden Markov Model Design for an Object and Feature Vector Computation 

 

Figure 16: Feature vector representation for a cylindrical object 

 

Figure 17: Translational projection elements of the feature vector for a cylinder 
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For the purpose of presenting the theory, we will develop an HMM for a cylindrical object. 

Consider a cylindrical object with 𝑁 possible preshape configurations as shown in the Figure 16. Each of 

these configurations is a state of the HMM. Thus, the HMM has 𝑁 states. Let us now see how the 

observations are calculated. The observation data is in the form of a 2𝑁X1 vector and it is called a feature 

vector. The feature vectors are generated at every time instant as the master arm and remote arm are 

moving towards the preshape pose under teleoperation. 

As shown in the Figure 16, let the remote arm gripper frame at a certain time instant be defined 

by (𝑥𝑖1 , 𝑦𝑖1, 𝑧𝑖1) and let the gripper frame change to (𝑥𝑖2 , 𝑦𝑖2, 𝑧𝑖2), at the next time instant, as a result of 

teleoperation. The pose of the gripper also changes from one time instant to the next. The aim of the user 

teleoperating the arm is to align the gripper to one of the preshape configurations at 𝐶1, 𝐶2, …  𝐶𝑁. Let, 

(𝑥𝑓, 𝑦𝑓, 𝑧𝑓) be the gripper frame at these preshape configurations. Let ∆𝑝 be the incremental translational 

vector (shown by the red arrow in Figure 16) due to the movement of the gripper frame. Let, 𝑝1, 𝑝2, …  

𝑝𝑁be unit vectors having the direction from the current gripper frame location to the desired location of the 

gripper frames at various preshape configurations. Let, 𝑘𝑡1, 𝑘𝑡2, …  𝑘𝑡𝑁be the magnitude of projection of 

∆𝑝 on each of 𝑝1, 𝑝2, …  𝑝𝑁. These magnitudes are not absolute values and take into consideration the 

sign of projections also. These magnitudes of projections are diagrammatically shown in Figure 17. 

Also, as the gripper is moving, the direction cosines of the gripper z-axis 𝑧𝑖2 is computed with all 

the z-axes of the likely preshape frames viz. direction cosines of 𝑧𝑖2and 𝑧𝑓1, 𝑧𝑓2, …  𝑧𝑓𝑁. Let these direction 

cosines be called as 𝑘𝑟1, 𝑘𝑟2, …  𝑘𝑟𝑁. These projection magnitudes are shown in Figure 18. Again, these 

are not absolute values and consider the sign of the projection also.  

The magnitudes of the projections of translational vectors as well as those of the gripper z-axis 

together make up the feature vector of observations for the HMM of the cylinder. Thus, the observations 

generated at every time instant are 𝑂 = [𝑘𝑡1 , 𝑘𝑟1 , 𝑘𝑡2 , 𝑘𝑟2 , … , 𝑘𝑡𝑁, 𝑘𝑟𝑁]𝑇. Since there are two members for 

every preshape configuration and since there are 𝑁 preshape configurations, the length of the feature 

vector generated at every instant is 2𝑁X1. Since these values are continuous, we will be using 

exponential probability density function for determining the observation probabilities. 
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Figure 18: Gripper z-axis projections for the feature vector for a cylinder 

3.6 Estimating Hidden Markov Model Parameters and Computing Observation Probability 

We have seen how observations are calculated for objects which can be approximated to a 

cylinder. In order to develop an HMM for these shapes, we need to train the model using these 

observations and states as inputs. Training the model is determining the parameters that completely 

define the model viz. the parameters π, 𝐴 and 𝐵. As mentioned earlier, Baum Welch algorithm is a 

popular algorithm that can be used to estimate the parameters. In our case, we assume the initial 

probability π and state transition probability distribution 𝐴. Since we are using exponential PDF to 

compute observation probability distribution 𝐵, the rate parameter of the Gaussian PDF for each state 

becomes the parameter that needs to be estimated. The estimation process and the assumptions are 

explained next. The assumptions and the estimation process of the parameters are the same for the 

models for all shapes. 

We assume that the user can start orienting towards any of the available desired preshape 

configurations. Thus, there is an equal likelihood to start teleoperating towards any of the preshape 

configurations. Or in other words, all states have equal initial probability values. Thus, for 𝑁 states, our 

initial state probability distribution is π = [1/ 𝑁, 1/ 𝑁 …1/ 𝑁] and it is of the order 𝑁x1. In certain cases 

when the initial gripper pose is always the same, the probability for that case can be made high or equal 

to 1 and 0 for the rest of the preshape poses. In some cases, it may be impossible to start at certain 
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gripper poses. Here the probability for those poses can be made zero and can be equally divided among 

the rest of the poses as long as the likelihood of starting at rest of the poses is equal. In our experiments, 

we start at random poses and hence all the elements of the initial probability distribution have equal 

value. 

In our experiments, a user teleoperating for grasping an object from a desired preshape pose will 

be assisted once the system determines their intention as to which preshape pose the user is interested 

in. We assume that the user normally adheres to a particular desired preshape configuration throughout a 

grasping task. This is a natural assumption because even in our daily activities, we normally adhere to 

our chosen grasping configuration while translating and orienting our hands for grasping a particular 

object. Thus, our state transition probability distribution has the following form: 

 𝐴𝑖𝑗= 0.9,                𝑖 = 𝑗 

 𝐴𝑖𝑗= 0.1/(𝑁 − 1), 𝑖 ≠ 𝑗 (45) 

In tasks where the users change their intention of grasping from one pose to the other, the state 

transition probability distribution can be trained accordingly. This can happen in cases where after 

grasping an object from a certain pose, the user is highly likely to go to grasp another object with a certain 

preferred pose e.g. a kitchen based environment where a spoon is usually grasped after a bowl is picked 

up. Baum Welch algorithm can be used for training in these cases. 

Our observations are continuous in nature and we have found out that the observations follow an 

exponential distribution. Thus, there is an exponential distribution associated with each state and this 

makes up our observation probability distribution 𝐵. In order to estimate 𝐵 we need to estimate the rate 

parameter 𝜆𝑗  of the exponential PDF for each state 𝑗. Several trials of teleoperating to preshape each 

desired pose starting from random poses are conducted. Observations are recorded for each trial and 𝜆𝑗 

for each desired pose 𝑗 are computed as explained below. 

We have found that the distribution of projection magnitudes of the incremental translation and 

orientation vectors on the desired translation and orientation vectors, over the length of the trajectory, is 
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positive exponential in nature. The projection magnitudes of translation and orientation vectors on the 

reference vectors belonging to undesired grasp configurations is not exponential for all cases. In the case 

certain objects (viz. the plate and the bowl) the distribution of projection of orientation vectors on 

undesired grasp configurations is negative exponential but the same is not true for the configurations 3 

and 4 of the cup. The distribution of projections of translation vectors seems to follow an asymmetric 

Gaussian distribution. Thus, due to lack of a pattern for projection magnitudes on undesired 

configurations, these are not used in the model. 

Let, 𝑂1, 𝑂2, …  𝑂𝜏, be the feature vectors generated by teleoperating the end-effector to a 

certain preshape pose 𝑗. Let [𝑘𝑡𝑗 ,𝑘𝑟𝑗] be the projection magnitudes of the translation and orientation 

vectors on the reference vectors for pose 𝑗. [𝑘𝑡𝑗
1,𝑘𝑟𝑗

1], [𝑘𝑡𝑗
2,𝑘𝑟𝑗

2], … [𝑘𝑡𝑗
𝜏,𝑘𝑟𝑗

𝜏] are generated at each 

time instant as the observations , 𝑂1, 𝑂2, …  𝑂𝜏, are generated. The generation of  [𝑘𝑡𝑗 ,𝑘𝑟𝑗] was 

explained in the previous sub-section. Let 𝐾𝑡 be a 1 x 𝜏 matrix of translation projection observations such 

that,  

 𝐾𝑡 = [𝑘𝑡𝑗
1, 𝑘𝑡𝑗

2, … 𝑘𝑡𝑗
𝜏] (46)  

where 𝜏 is the number of feature vectors recorded for state 𝑗. Let 𝐾𝑟 be a 1 x 𝜏 matrix of translation 

projection observations such that,  

 𝐾𝑟 = [𝑘𝑟𝑗
1, 𝑘𝑟𝑗

2, … 𝑘𝑟𝑗
𝜏] (47)  

where 𝜏 is the number of feature vectors recorded for state 𝑗. Let  𝐼 be a 𝜏x1 vector of ones, such that,  

 𝐼 = [1, 1, 1, …  1]𝑇 (48) 

Then, the mean vector for the translation projection exponential distribution for state 𝑗 can be computed 

as, 

 𝜇𝑡𝑗  = 1
𝜏
  𝐾𝑡 𝐼 (49) 
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𝜇𝑡𝑗  is a vector the order 1x1. The mean vector for the translation projection exponential distribution for 

state 𝑗 can be computed as, 

 𝜇𝑟𝑗  = 1
𝜏
  𝐾𝑟 𝐼 (50) 

𝜇𝑟𝑗  is a vector the order 1x1. The maximum likelihood estimate of the rate parameter of an exponential 

distribution is given by the inverse of the mean. Thus, the rate parameter for the exponential distribution 

of translation and orientation projections on desired vector is given by, 

 𝜆𝑡𝑗 = 1
𝜇𝑡𝑗

 and  𝜆𝑟𝑗 = 1
𝜇𝑟𝑗

 (51) 

In this way, the rate parameters for translation and orientation projections i.e. 𝜆𝑡𝑗 and 𝜆𝑟𝑗 for a 

particular state 𝑗 are computed from the observations. Similarly, we can compute 𝜆𝑡𝑗 and 𝜆𝑟𝑗 for all the 

remaining states. In order to ensure that the distribution is probabilistic or the area under the distribution 

curve is unity, we evaluate co-efficient 𝑐𝑡𝑗 as, 

 ∫ 𝑐𝑡𝑗
1
−1  𝑒(𝜆𝑡𝑗)(𝑥)𝑑𝑥= 1 (52) 

The limits of integration are the maximum and minimum value of projection scalars on reference vectors. 

Then, the observation probability for a state 𝑗, due to translation and rotation projection scalars 𝑘𝑡𝑗 and 

. 𝑘𝑟𝑗, is given by, 

 𝑝𝑡𝑗= 𝑐𝑡𝑗 𝑒
𝜆𝑡𝑗  𝑘𝑡𝑗 and 𝑝𝑟𝑗= 𝑐𝑟𝑗 𝑒

𝜆𝑟𝑗  𝑘𝑟𝑗  (53) 

We also determine the normalized distance of each grasp point from the end-effector position. 

This is used to weight the probability value, determined from the exponential distribution, according to the 

nearness of a grasp point. This quantity helps to prevent fluctuations in intention determined when the 

arm is making insignificant translational movements or is simply rotating without any translations. When 

the hand is not translating and only rotating, all the objects in the environment are virtually located at the 
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same point. This is because all the projection magnitudes 𝑘𝑡𝑗 are zero and there is no way to distinguish 

among different grasp points based on position. In such a scenario, grasp points with similar grasp 

configurations are alike and the intention recognition algorithm can output any of these grasp points as 

the desired grasp points. We have observed that motions involving no translations and only rotations 

occur near an object of interest. Thus, the nearness measure will help to not consider grasp points far 

away with similar grasp configurations, increasing the accuracy. Moreover, once the hand has been 

preshaped, the user usually engages in small movements to fine-align the gripper with the grasp 

configuration as imagined by the user. This might result in deviations of the gripper frame from the 

recorded grasp pose. Again, if we only consider the probability due to differential translations and 

orientations, the algorithm might give a wrong value as there might be other objects along the same 

direction of motion and with similar grasp configurations. Considering a weighted measure based on 

object nearness will prevent these unwanted fluctuations in intention determination. 

Weighted probability is determined as inverse of twice the normalized distance value of the 

particular grasp point. The normalization is with respect to all other grasp points of all the objects in the 

environment. The factor 2 is considered so that the area under the probability distribution curve integrates 

to 1. Let 𝐷 be sum of distance of all grasp points from the hand at the current time instant.  

 𝐷 = ∑ ∑ 𝑑𝑖𝑗𝑁
𝑗=1

𝑃
𝑖=1  (54) 

where 𝑁 = total no. of grasp configurations for object 𝑖 and 𝑃 = total no. of objects. 

Then, the normalized distance value of the grasp point with grasp configuration 𝑗, belonging to 

object 𝑖 is given by, 

 𝑛𝑑𝑖= 𝑑𝑖𝑗
𝐷

 (55) 

Computing weighted probability based on distance makes it difficult for a user to move away from 

an object if they are close to it. This is because the probability is much higher for the object that is near 

than for other objects. The user experiences resistance while teleoperating the end-effector away from 
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the object that is near, if the user decides to change her intention and move towards another object. The 

end-effector seems stuck in the vicinity of the object. The skilled teleoperator was able to retrieve the end-

effector after about eight to twelve repeated movements whereas unskilled teleoperators took more 

movements to achieve the same result. This is because a skilled teleoperator is able to teleoperate the 

end-effector in such a way that their motions result in higher translation and orientation projections, thus 

causing an increase in the translation and rotation probabilities sooner than that caused by an unskilled 

teleoperator. It was a major cause of frustration for unskilled teleoperators. To circumvent this problem, a 

weight factor based on the direction of translation motion was introduced. This parameter was computed 

by adding 1.005 to translation projection magnitude 𝑘𝑡. Since, 𝑘𝑡𝑗 varies between -1 and 1, the weight 

factor due to direction of translation will vary between 0.005 and 2.005. The small number 0.005 prevents 

the total probability from becoming zero at any time. As a result, wrong object detection due to rotation-

only movements is prevented by adding the weight due to proximity of an object, to the probability, and 

the end-effector getting stuck near an object is prevented by adding the weight due to direction of 

translation. 

Once the rate parameters are estimated, they can be used to calculate the likelihood of the 

occurrence of the observations, given the state. In other words they can tell as to what is the likelihood 

that a feature vector was generated while teleoperating given that the user is intending to grasp from a 

certain preshape configuration.  

Thus, if an observation 𝑂 is generated as a result of teleoperation, then the likelihood that this 

observation occurred assuming that the user was intending to preshape to pose 𝑗 is given by, 

 𝑏𝑗(𝑂) = 𝑝𝑡𝑗 𝑝𝑟𝑗 𝑝𝑛  𝑝𝑑  (56) 

where:  

a) 𝑝𝑛= nearness probability due to normalized distance = 1/(2 𝑛𝑑𝑖) 

b) 𝑝𝑑 = weight factor due to direction of translation = 1.005 + 𝑘𝑡𝑗 
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As the user is teleoperating towards a particular grasp configuration, the observation probability 

𝑏𝑗(𝑂) is computed for all the grasp configurations. The state for which the observation probability value is 

the highest, for a particular feature vector, is the most likely state at that instant. Although, the score of 

the exponential PDF is a good measure of the intention at that instant, it however does not take the 

history of movements and state transitions into consideration. Hence we need to determine the intention 

by using a method that uses the score computed by Equation (56) and also gives the most likely states 

over a period of time. For including these considerations, we make use of the HMM theory. This method 

is explained in the next section. 

3.7 Object Identification by Determining Output Probability 

We have already shown how we develop a model for each shape. Thus every object in the 

environment has a model assigned to it depending on its shape. In order to determine the intended object 

of interest as the user teleoperates, we use the solution to problem 1 of HMM theory. The problem 1 of 

HMM theory determines the likelihood that a given set of observations are generated by a certain model. 

As the user teleoperates, the likelihood of the observations being generated by each model (one for each 

object) is computed.  The model that gives the highest likelihood value for the observations generated up 

that point is the one that is most likely to occur. Thus, determining the most likely model gives us the most 

likely object that the user intends to traverse towards. This computation of output probabilities and their 

comparison takes place online as the user is teleoperating. The mathematical process of determining the 

most likely model using HMM theory is explained in the tutorial by Rabiner [43] and the reader is 

requested to refer to that text. Here we give a summary of the process.  

The likelihood of a model, given the observations up to a certain time instant, needs to be 

determined over all the possible state combinations. This process is computationally expensive but a 

procedure called Forward algorithm [43] makes it efficient. The process starts with determining the 

probability of the model given the observation at time instant one, for each state. Then, as the 

observations are continuously generated, the probability of the model being in a certain state at a time 
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instant, over all states, is computed by taking the summation of the product of the probabilities of being at 

a state at the previous time instant, the state transition to the state under consideration and the 

observation probability given the state. The total probability of the model at a time instant is then the sum 

of the probabilities at each state just computed.  

3.8 Multi-grasp-configuration Identification Using Viterbi Decoding 

After the intended object has been identified, the next step for the system is to identify the grasp 

configuration of interest. . Since, the intention or the desired poses are the states of the HMM, we need to 

find the most likely states as the user is teleoperating, given the model and the observations. Thus, we 

use the solution to the problem 2 of the HMM viz. to find the most likely state sequence given the model 

and the observations.  

There are a number of ways by which the optimal state sequence can be chosen depending on 

the optimality criteria. One way is to select the single best state at every instant. This method will not work 

for those cases where the state transition probability for transitioning from one state to the next may be 0 

and those two states are the best states for two consecutive time instants. Other solutions find the best 

state pairs (𝑞𝑡, 𝑞𝑡+1) or triplets  (𝑞𝑡, 𝑞𝑡+1, 𝑞𝑡+2). However, the most widely used algorithm for determining 

the most likely state sequence is the Viterbi algorithm which finds the single best state sequence for all 

observations given as input i.e. it maximizes 𝑃(𝑄 | 𝑂 , λ).The Viterbi algorithm is explained in the tutorial 

by Rabiner [43] and we briefly describe it here. For complete details and mathematical equations, the 

reader is requested to refer to [43]. 

The procedure to determine the most likely state sequence is similar to that of determining the 

probability of the model except that the summation is replaced by maximization. The state from the 

previous time instant that leads to the maximum transition probability is stored in a separate data 

structure and so is the probability value for the state at the current time instant. This way the best states 

are determined at every time instant Once the last observation is encountered, the state with the 
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maximum probability at that time instant is taken as the best state and then backtracking the stored 

maximum states up to the first time instant gives the optimal state sequence.  

Thus, as the arm is being teleoperated and observations are generated, Viterbi decoding will give 

the most likely state sequences or the most likely preshape poses that the user intends to align the 

gripper frame with. By backtracking to the last 𝑇 time steps every time a new feature vector is 

encountered, the most likely state sequence can be updated. If the states are denoted by whole numbers, 

then either the average of the states over the last  𝑇 time steps or the maximum mode state over the last 

𝑇 time steps can be used to determine the preshape pose at that instant. Refreshing the path of best 

state sequence this way when a new feature vector is encountered takes into account the trend of 

changing intention because the values of best state paths are retained and are not reinitialized every time 

a new feature vector comes in and the first one in the queue is removed. 

3.9 Hidden Markov Model Design and Implementation 

In our implementation of the HMM theory presented above, we have used a bowl shape, a plate 

shape and a cup shape as the object classes. The objects and the preselected grasp configurations are 

shown in the Figure 20. Note the acronyms used to describe grasp configurations for each object in 

Figure 20 caption. Thus, we have selected objects in a kitchen environment. The three object classes are 

clearly distinguishable based on their shapes. Moreover, the bowl can be grasped from three 

configurations, the place from two and the cup from four. These grasp configurations have been selected 

by the skilled teleoperator according to his knowledge of what grasp will lead to a robust grasp. Other 

grasp configurations are possible; for example, the bowl can be grasped from its fourth edge and the 

plate from the other side with a horizontal grasp. But, without the mobility of the wheelchair or the 

platform, these configurations are difficult to reach or unreachable by the manipulator approaching 

objects from one side. 

Figure 19 shows the graphical user interface developed to test our object and grasp configuration 

identification algorithm. It is shown on the computer screen in front of the user as the user is teleoperating 
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towards the desired object and grasp configuration. It also acts as a feedback for the users executing a 

grasping task in teleoperation, using our method. It is a passive display i.e. the user can only be feedback 

visual information and the user cannot send any commands using this interface. It consists of dynamically 

changing images of the predicted grasp configuration and dynamically changing probability meter bars. 

The same images shown in Figure 20 are the images produced on the screen. The top window on the 

right half of the screen shows the normalized output probability of each object’s HMM. The tallest column 

gives the object predicted. The bottom window shows the normalized count of the states from the Viterbi 

sequence of the selected object. The tallest column in this window represents the predicted grasp 

configuration. 

 

Figure 19: Static image of predicted grasp configuration and dynamically changing probability meter bars 

The interface consisting of meter bars was developed using OpenCV library. The rate at which 

the meters were displayed was a fourth of the WMRA control loop, which was 70 to 870 Hz. This was 

done because it was observed that arm motion becomes intermittent and much delayed if the OpenCV 

image display functions ran at 70 to 80 Hz. This results in non-intuitive motion. Dropping the frequency of 

OpenCV image processing functions to a fourth of WMRA control gave normal motion of the arm and an 

intuitively changing feedback. There was still a delay in the in WMRA executing master device 

movements. However, the arm moved continuously once it began moving. This delayed response was 

still intuitive and persists even when OpenCV image processing is not used.
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Figure 20: Objects and grasp configurations used in our implementation. First row shows three configurations for the bowl (B1, B2 and B3). 
Second row shows two configurations for the plate (P1 and P2). Third row shows four configurations for the cup (C1, C2, C3 and C4) 
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 Since, we have three distinctly shaped objects, viz. bowl, plate and cup, we have three object 

classes and hence, three HMMs. The HMM for bowl has three states since bowl has three grasp 

configurations. Similarly, the HMM for plate and cup have two and four states respectively. We know that, 

two exponential distributions, one for translation and one for rotation, are associated with each state and 

they are used for observation probability computation. For computing the rate parameters and coefficients 

for each exponential distribution, as explained in Section IV, a skilled teleoperator repeatedly preshaped 

over each grasp configuration of each object ten times, starting from random remote arm end-effector 

poses each time. Ten trials were chosen since convergence of rate parameter values was obtained after 

10 trials for each configuration. In all, the skilled teleoperator performed 90 trials. Figure 21 shows the 

histograms and the approximated exponential distributions for translation and rotation, obtained from 

training trials on all the grasp configurations of the bowl. Figure 22 shows the histograms and the 

exponential distributions for the plate. Figure 23 shows the histograms and exponential distribution for the 

first two grasp configurations of the cup whereas Figure 24 shows the ones for the remaining two 

configurations. Table 2 lists the values of the rate parameters and the coefficients for translation for all the 

grasp configurations of all the objects. Table 3 lists the same values for the rotation. These values were 

calculated by using the training data from the skilled teleoperator and using Equations (51) and (52) 

described earlier. 

Table 2: Rate parameters and coefficients for translation 

Object Grasp 
Configuration 

𝝀𝒕𝒋 𝒄𝒕𝒋 

Bowl 

1 1.4946 0.353 

2 1.5077 0.351 

3 1.4046 0.366 

Plate 
1 1.2459 0.391 

2 1.3488 0.375 

Cup 

1 1.6076 0.336 

2 1.6961 0.322 

3 1.4833 0.355 

4 1.7564 0.313 

 



www.manaraa.com

70 
 

    

  

 

(a) Translation, GC1 (b) Translation, GC1 (g) Rotation, GC2 (h) Rotation, GC2 

     

(c) Rotation, GC1 (d) Rotation, GC1 (i) Translation, GC3 (j) Translation, GC3 

    

(e) Translation, GC2 (f) Translation, GC2 (k) Rotation, GC3 (l) Rotation, GC3 

Figure 21: Histograms and approximated exponential distributions of projection scalars for the bowl. GC: grasp configuration; x-axis (all figures): 
projection of translation and rotation vectors on reference vectors, y-axis (figures a, c, e, g,I, k): number of values in histogram, y-axis (figures b, d, 
f, h, j, l): value from approximated exponential distribution (Equation 53) 
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(a) Translation, GC1 (b) Translation, GC1 (e) Translation, GC2 (f) Translation, GC2 

     

(c) Rotation, GC1 (d) Rotation, GC1 (g) Rotation, GC2 (h) Rotation, GC2 

Figure 22: Histograms and approximated exponential distributions of projection scalars for the plate. GC: grasp configuration; x-axis (all figures): 
projection of translation and rotation vectors on reference vectors, y-axis (figures a, c, e, g): number of values in histogram, y-axis (figures b, d, f, 
h): value from approximated exponential distribution (Equation 53) 
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(a) Translation, GC1 (b) Translation, GC1 (e) Translation, GC2 (f) Translation, GC2 

     

(c) Rotation, GC1 (d) Rotation, GC1 (g) Rotation, GC2 (h) Rotation, GC2 

Figure 23: Histograms and approximated exponential distributions of projection scalars for GC1 and GC2 of the cup.GC: grasp configuration; x-
axis (all figures): projection of translation and rotation vectors on reference vectors, y-axis (figures a, c, e, g): number of values in histogram, y-axis 
(figures b, d, f, h): value from approximated exponential distribution (Equation 53) 
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(a) Translation, GC3 (b) Translation, GC3 (e) Translation, GC4 (f) Translation, GC4 

    

(c) Rotation, GC3 (d) Rotation, GC3 (g) Rotation, GC4 (h) Rotation, GC4 

Figure 24: Histograms and approximated exponential distributions of projection scalars for GC3 and GC4 of the cup. GC: grasp configuration; x-
axis (all figures): projection of translation and rotation vectors on reference vectors, y-axis (figures a, c, e, g): number of values in histogram, y-axis 
(figures b, d, f, h): value from approximated exponential distribution (Equation 53)
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Table 3: Rate parameters and coefficients for rotation 

Object Grasp 
Configuration 

𝜆𝑟𝑗 𝑐𝑟𝑗 

Bowl 

1 2.5055 0.21 

2 1.6355 0.331 

3 2.9345 0.156 

Plate 
1 2.5344 0.202 

2 1.9924 0.277 

Cup 

1 1.8900 0.292 

2 1.8888 0.292 

3 1.9851 0.278 

4 1.8410 0.3 

 

For implementing HMM, we have used logarithm of probabilities in order to avoid overflow 

problems in digital computers. The difference in the output probabilities of detected object and all other 

objects in the environment had an upper bound of 10200. If no upper bound was placed, it would take very 

long for the algorithm to register an intention change. The backtracking window for Viterbi algorithm was 

50 Viterbi steps. Higher values would slow down the intention change detection. Lower values would 

result in sudden changes in intention recognition of grasp configurations even due to erroneous 

movements from the user. Mode value of most likely state sequence was used as the detected grasp 

configuration. For assistance, the motion of the remote arm was amplified by two times in the desired 

direction and attenuated by five times in the undesired direction. In this proof-of-concept, we have 

manually measured the object locations and their preshape and grasp configurations for the purpose of 

testing. In an actual setting, we will be using a depth based vision system, which we are in the process of 

integrating. The complete implementation was in C++ using object oriented programming paradigm. The 

code was made general enough to dynamically account for variable number of objects, their poses, 

trained model parameters, drop-off poses, visual interface feedback components etc. All the components 

or implementing HMM are developed in the lab i.e. third party software tools have not been used. A 

schematic representation of the complete algorithm is shown in the Figure 25. 
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Figure 25: Schematic representation of the intention recognition process 
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(a) (b) 

 
(c) 

Figure 26: Pictorial representation of output probability and Viterbi algorithm in our implementation 

A pictorial view of the maximum output probability and Viterbi algorithm is presented next. Figure 

26(a) gives an example of the processing of the HMM for the bowl whereas Figure 26(b) gives the 

example of the plate. The set of circles with embedded images represent the states or the grasp 

configurations whereas the lowermost circles in each figure represent the observations. Currently, we 

have two feature vectors for each grasp configuration viz. 𝑘𝑡, projection magnitude due to translation and 

𝑘𝑟, projection magnitude due to rotation. The probabilistic relationship between the states and the 

observations is depicted by the approximated exponential probability distribution function, shown next to 

the arrows connecting the states to the observations. The crisscross arrows mean summation over all the 
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states while computing the output probability. The same arrows signify maximum transition probability 

while computing Viterbi optimal state sequence. ∝1 and ∝2represent the value of the output probability 

computed at every time instant. The pictorial representation for the cup, with four states, is similar. During 

teleoperation, Viterbi decoding is carried out on the HMM which has the maximum output probability to 

determine the intended grasp configuration. This is shown in the Figure 26(c). Let’s say that the plate is 

the object with the maximum output probability. Then, 𝑃2, 𝑃1, 𝑃1, 𝑃1etc. represent the best states at each 

time instant according to the Viterbi algorithm. The arrows run in the direction opposite to time, and 

represent backtracking.  
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Chapter 4: Experiments and Results 

This chapter gives details of the experiments conducted and the results obtained that validate our 

grasp configuration identification algorithm and also validate our hypothesis, that the intention based 

assisted method makes grasping easier and faster. In the first section, the details of the test set-up, the 

subjects and the test objectives are given. The second section gives validation of intention recognition 

algorithm. The following section presents a comparison of intention-based assisted method with 

unassisted method whereas the last section gives a comparison with maximum-projection method. Each 

section describes experimental methodology, results and a discussion on results. 

4.1 Introduction 

 Experimental Test-bed 4.1.1

The complete test-bed is shown in the Figure 27. The teleoperation test-bed consists of an in-

house developed 7 DOF wheelchair mounted robotic arm (WMRA) [67] teleoperated using a 6 DOF 

Phantom Omni device. Detailed description of the manipulators was presented in Chapter 2. A parallel 

jaw gripper is mounted on the WMRA. The wheelchair is stationary throughout the experiments. The 

workspace for grasping objects is directly visible to the user. Joint velocity vectors from Omni space are 

mapped to the WMRA space and then Singularity-robust inverse of the Jacobian is used to compute 

WMRA joint velocities. Optimization criteria based on weighted least norm of joint velocities and joint limit 

avoidance is used to control the redundancy of WMRA, as mentioned in Chapter 2. The Omni and the 

WMRA control loop ran at 500 HZ and 70~80 Hz respectively but this delay does not affect task 

performance. 
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Figure 27: A subject teleoperating to grasp utensils from a dishwasher rack and lay the table (partially 
visible) on the right 

 Human Subjects Information 4.1.2

The experiments were conducted on six able-bodied human subjects and one wheelchair bound 

individual. All the subjects gave their informed consent through an Institutional Review Board (IRB) 

approved protocol. The six able-bodied subjects were all males, aged 22 to 29 years. The wheelchair-

bound individual was a 24 year old female. One out of the six able-bodied individuals was a skilled robot 

teleoperator, having more than 5 years of experience in teleoperation. The HMM models were developed 

by using the training data from this subject. The other five able-bodied subjects and the wheelchair-bound 

individual had no experience in using a telerobotic system.  These trained HMM models were used by all 

subjects, including the skilled teleoperator, while testing using our method. 

 Experimental Objectives 4.1.3

The main objectives of the experiments were to (i) validate the intention recognition algorithm (ii) 

compare the implemented method with unassisted teleoperation method (iii) compare the implemented 

method with maximum-projection method (iv) determine the accuracy of the method when objects are 

shuffled and (v) determine the robustness of the method with respect to intention changes. Shuffling of 
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objects was carried out while comparison with the unassisted and the maximum-projection methods. 

Accuracy has been measured in a comparative form with maximum-projection method. 

4.2 Validation of Intention Recognition 

In order to validate our intention recognition algorithm, the subjects were asked to grasp from 

various configurations. Different arrangements, in terms of the pose, of the three objects on the 

dishwasher rack was used i.e. the objects were shuffled around and oriented differently each time. The 

output on the computer screen in front of the subjects (refer Figure 19) was used to determine if the 

algorithm was successfully able to detect the intention and predict the desired object and the grasp 

configuration. Observing the assistance function scale the motion of the arm gave another form of 

verification. Videos of the subjects executing the grasping trials were also recorded.  The results from 

testing with the skilled operator i.e. subject 6, are presented next. 

 Results from Validation of Intention Recognition 4.2.1

 The images in the first row of Figure 28 are snapshots of the remote arm workspace from a 

single run of teleoperation performed by a subject. Those in the second row are the corresponding 

snapshots of outputs as seen on the screen in front of the subject. As described previously (refer Figure 

19), the image on the left shows the predicted object and grasp configuration. The meter bars on the right 

side top window represent normalized output probability whereas ones on the bottom right side represent 

normalized count of Viterbi sequence. Thus, the tallest meters represent the intended object and grasp 

configuration, as determined by the algorithm. They are shown in red so that they can be distinguished 

quickly. Initially, the subject was teleoperating the remote arm gripper with the intention of grasping from 

B1 i.e. bowl at configuration one. This state is shown in Figure 28 (a). As seen from the Figure 28 (b), the 

algorithm predicted the grasp configuration correctly. The meter bar for the bowl is the tallest among 

objects and the one for the configuration 1 of the bowl is the tallest. As the subject made a slight 

movement in the forward direction, the algorithm predicted C1 i.e. cup with grasp configuration one, as 
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the desired grasp configuration. These states are shown in Figure 28 (b) and (f). C1 has a grasp 

configuration similar to B1. This shows how probability due to translation 𝑝𝑡𝑗 plays a role in Equation (56) 

in determining the intention. Movement in the forward direction increased the 𝑝𝑡𝑗 associated with the 

observation PDF of cup and reduced the one associated with the bowl. The subject then changed her 

intention and desired to grasp the plate from P2 or configuration two. As the subject started teleoperating 

by pitching the gripper to get it to a horizontal orientation, the algorithm predicted C4. This is seen from 

the Figure 28 (c) and (g). We must note that C4 has a configuration similar to P2; both have a horizontal 

configuration for the gripper. The algorithm thus predicted the configuration C4 instead of P2 because the 

gripper is still closer to the cup than it is to the plate. With hardly any translation, predominant rotational 

movement and nearness to the cup, the observation probability associate with C4 achieves a higher 

value than that associated with P2. Through this snapshot, we see the role played by probability due to 

rotation 𝑝𝑟𝑗 and the weight factor due to nearness 𝑝𝑛 . We must note here that an incorrect intention was 

detected as the user had barely started to teleoperate toward the new target P2. Consistent movements, 

as we will see, will ultimately make the algorithm detect the right intention. We must also note that, the 

intention change as detected by the algorithm is not abrupt but takes place gradually over a period of time 

as the user teleoperates. Moreover the user’s motion is scaled up toward the grasp configuration leading 

to the detected intention and scaled down in other directions. So, when the user decides to change their 

intention and teleoperate to a new target, they might experience resistance in the direction that lead to the 

new target. Only when the correct intention change is detected by the algorithm, is the user able to align 

easily with the new target. Moving on with the sequence of movements in in Figure 28, a slight translation 

and rotation from the state in Figure 28 (c), towards P2 then makes the algorithm predict the right 

intention. This can be confirmed from the snapshot of the screen as shown in Figure 28 (h). This happens 

because the observation probability associated with P2 is higher than that associated with C4 or any 

other configuration, over the duration of teleoperation from Figure 28 (c) to Figure 28 (d). This is due to 

the high values of 𝑝𝑡𝑗, 𝑝𝑟𝑗 and  𝑝𝑛 associated with P2 observation PDF. Thus, the observation probability 

values and hence output probability values gradually change to give the correct prediction for the object 

as plate, at the instant shown in Figure 28 (d). The Viterbi sequence for the plate is started when plate is 

detected and it returns the configuration 2. 
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Figure 28: Results from the motion intention recognition of a teleoperation run. The figure shows how the algorithm correctly predicts the subject's 
intention as her intention changes 

 

 



www.manaraa.com

83 
 

 

 

    
(a) (b) (c) (d) 

    

    

    
(e) (f) (g) (h) 

    

Figure 29: Results from the motion intention recognition of another teleoperation run. The figure shows how the algorithm is robust to fluctuations 
and at the same time correctly predicts the subject's intention
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Now, we move our attention to Figure 29. The first row in Figure 29 consists of snapshots from 

various points in time of the remote arm and its workspace as the same subject was performing another 

run of teleoperation. The bottom row images are the snapshots of the computer screen as seen by the 

subject, at the same points in time as the images directly above them. The subject initially desired to 

grasp the bowl from configuration two, or B2, and began teleoperating from a point when the gripper was 

very close to the cup. This state is shown in Figure 29 (a). The algorithm predicted cup configuration two, 

or C2, as seen in Figure 29 (e). This is because the object is very near the cup, so probability due to 

nearness 𝑝𝑛 is higher for the observation probability of the HMM associated with the cup than it is for the 

HMM associated with any other object. The probability due to rotation projections, 𝑝𝑟𝑗, are almost the 

same for the cup and the bowl and, are higher than that for the plate, the plate not having a grasp 

configuration similar to B2 or C2. The probability due to projection of translation vectors, 𝑝𝑡𝑗, are low for 

the HMM associated with bowl or the 𝑝𝑛 of the bowl outweighs it, thus resulting in an overall higher 

observation probability for the cup. In the duration between Figure 29 (a) and (b), the subject has 

translated and rotated the gripper in the direction of B2. We can see from the Figure 29 (f), that according 

to the intention recognition algorithm, the likelihood of the user grasping the bowl has increased and that 

of the user grasping the cup has gone down. This is evident as the meter for the bowl is taller than the 

cup. The grasp configuration that the algorithm predicts is two. This is happening because the 

probabilities due to translation, rotation and nearness are continuously increasing the B2 and decreasing 

for all other configurations as the remote arm is teleoperated between Figure 29 (a) and (b). Thus, the 

output probability of the HMM associated with bowl gradually increases while those associated with other 

objects decrease. The Viterbi sequence predicts configuration two for the bowl from among configurations 

one, two and three, again because of high 𝑝𝑡𝑗, 𝑝𝑟𝑗 and  𝑝𝑛 for configuration two. The image of the hand 

grasping the bowl at B2, seen on the output screen in Figure 29 (f), is another representation of the 

predicted object and grasp configuration. Also, the subject faced resistance in motion when she had 

started to teleoperate from the state in Figure 29 (a) since the robot was assisting the user to preshape to 

C2. But persistent motion towards B2 led the algorithm to ultimately detect B2 as the configuration of 

interest. 
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From the state in Figure 29 (b) to (c), the user continued to rotate and translate the gripper 

towards B2. We can see from the output of the intention recognition algorithm in Figure 29 (g) that the 

likelihood that the subject will grasp the bowl has increased while that for the cup has decreased. This is 

because the probabilities due to 𝑝𝑡𝑗, 𝑝𝑟𝑗 and  𝑝𝑛 continue to increase for the bowl. The same is true for the 

Viterbi sequence. However, we must note that the time difference between Figure 29 (b) and (c) is much 

smaller than that between Figure 29 (a) and (b). This is because, the correct intention had been detected 

by the time the subject was at state Figure 29 (b) and hence the user was assisted while teleoperating 

from Figure 29 (b) to (c). This is in contrast to the initial resistance that the subject experienced while at 

the state of Figure 29 (a). The intention detected continues to predict B2 as the grasp configuration of 

interest as the subject teleoperates from the state at Figure 29 (c) to that at Figure 29 (d). When 

teleoperating through this phase, translations were predominant and there were hardly any rotational 

movements. Thus, the contribution of 𝑝𝑟𝑗 to the probability computation was much less compared to 𝑝𝑡𝑗.  

As a result, the Viterbi did fluctuate in predicting the intention correctly due to errors in human 

translational movement. There were no fluctuations in predicting the object since the value of 𝑝𝑛 for the 

bowl was much higher compared to that for other objects due to nearness to the bowl. However, the 

fluctuations in predicting the grasp configuration were far less than that the subject experienced when 

executing the task in the maximum-projection mode.  In the maximum-projection mode, the intended 

object was determined by taking the maximum translation projection and the grasp configuration was 

determined by taking the maximum rotational projection. Correct object and grasp configuration was 

detected as the arm was being teleoperated towards B2. But, after the gripper was oriented to align with 

B2, and the arm was still traversing to B2, the rotational projections were negligible as the gripper had 

already oriented.  With no definite rotational projections, the maximum-projection algorithm randomly 

selected grasp configurations of the bowl as the desired. This resulted in rapid fluctuations in prediction of 

grasp configuration and often wrong prediction of grasp configuration. Our algorithm, on the other hand, 

was more robust to these fluctuations. By conducting similar tests with more subjects, we confirmed that 

the algorithm was able to determine the correct intention every time. We tested with shuffling objects and 

placing them in the dishwasher at different poses each time. In all the runs, we were able to obtain correct 

intention recognition. 
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4.3 Comparison of Intention based Assistance with Unassisted Teleoperation 

 Experimental Methodology 4.3.1

In order to validate our hypothesis, the subjects executed pick-and-place tasks involving the three 

objects shown in Figure 20, in intention based assisted mode and unassisted teleoperation mode. The 

set-up used for the experiments is shown in Figure 27. The objects are to be picked up from the 

dishwasher rack and placed on a table next to it. In the intention-based assisted mode, the intention 

recognition algorithm identifies the object and grasp configuration of interest and assists the subject to 

preshape and grasp it. The assistance until preshaping is provided based on intention recognition. After 

this point, the subject is assisted by scaling the motion of the gripper along its forward motion axis so that 

the subject easily envelopes the paddles around the object to grasp it. Assistance is also provided in the 

place phase, but no intention is detected in this phase since each object can be placed in only one way. 

In the unassisted mode, there is no intention recognition and no assistance. Each subject executed a 

pick-and-place task four times in each mode. This way, all distinct grasp configurations were accounted 

for twice in each mode. For four of the subjects, the intention-based assisted mode followed the 

unassisted mode whereas for the other three, it was the other way round. This interchanging of the order 

of the modes helped nullify any learning effects due to any of the modes. It helped to prevent our results 

from being biased to any mode. Each assisted and unassisted mode pair is one set and so each subject 

executed four sets. The order of grasp configurations, in which the various objects were to be grasped, 

and the pose of the objects in the dishwasher was changed after each set. As a result, randomness was 

introduced in the tests and any improvement in task performance by a subject due to predictability in the 

arrangement and order of grasp configuration was prevented.  The objects were also shuffled at the end 

of each set for each subject. Sample object placements for subject number 4 are shown in the Figure 40. 

In all, each subject performed 24 pick-and-place trials. Before beginning the trials, each subject was given 

ample time to get familiarized with the telerobotic system. On an average, each subject took around 45 

minutes to get familiarized and about 4 hours to complete the tests. The subjects were given a 15 minute 

break after they completed the first two sets. 
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As the subjects executed the pick-and-place tasks, we recorded the time for grasping each 

object, the total time for completing each pick-and-place task and the number of Omni stylus button 

clicks. The number of clicks gave us an idea of the amount of master device movements and hence the 

amount of effort expended by each subject. This is explained as follows. Users ordinarily click the button 

on the Omni stylus button to engage the WMRA and then move the stylus to teleoperate. The clicking of 

the Omni stylus button acts as a safety check and prevents the movement of the WMRA if only the stylus 

is moved. However, since the workspace of the Omni is smaller than that of the WMRA, the users would 

click and drag the stylus until the Omni workspace limit is reached. After that they would release the 

button, reposition the stylus to the other end of the workspace and start teleoperating again. We call this 

activity as indexing. Thus, one index is a unit of subject’s movement at the master. By counting the total 

number of Omni button clicks, we could estimate the number of unit hand movements made by the 

subject during a trial. This measure gave us an idea of the amount of efforts each subject puts in during a 

task trial. 

After completing the first trial set, the subjects were asked to rate on a scale of 1 (easy) to 10 

(difficult), how easy was it to execute the task in the two modes. They also were asked to provide a self-

rating of the various factors from the NASA-TLX assessment [68] that contribute to operator workload. 

The various factors were mental demand, physical demand, temporal demand, performance, fatigue and 

frustration.Effort is a part of NASA-TLX assessment and this factor was replaced with ‘fatigue’. This is 

because fatigue is more relevant to this study and, mental and physical demands are representational of 

effort.  The definition of all the parameters was read out to the participants before they were given the 

scoring sheets for evaluation. 

A sample NASA-TLX scoring sheet is shown in the Appendix A. After rating each factor, the 

subjects were asked to comparatively weight the factors. In order to weight the factors, the subjects were 

presented with all possible paired combinations of the factors and were asked to select the factor that 

they felt was dominant. Let 𝑠𝑖 be the score of the 𝑖th factor and 𝑤𝑖be the number of times it was rated 

more dominant compared to other factors. The adjusted rating for each factor 𝑖 is given by,  

      𝐴𝑖  = 𝑠𝑖 𝑤𝑖      (57) 
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∑ 𝐴𝑖 6
𝑖=1 gives the total weighted rating for the subject. In this manner, a weighted NASA-TLX score was 

obtained for each subject. The surveys were presented to the subjects after the first trial set. After the 

ends of subsequent trial sets, the subjects were asked if they needed to modify their feedback, in which 

case they were given an opportunity to. We observed that all the subjects were satisfied with their original 

feedback and did not modify it at the end of subsequent trial sets. An Analysis of Variance (ANOVA), on 

the quantitative as well as the qualitative data, was carried out to statistically compare the two modes. 

 Results from Comparison with Unassisted Method 4.3.2

As mentioned earlier, we compared our method with the unassisted teleoperation method by 

comparing the time to grasp, time to complete the pick-and-place task and the number of human hand 

movements. We also present qualitative results which compare the ease-of-use and the total workload 

experienced by the subjects while executing the task in the two modes. These results are based on the 

experimental procedure described In Section 4.1.  

Figure 30 shows the average time it took for each subject to grasp an object using our method 

and the unassisted teleoperation method. The average was taken over all the 24 trials that each subject 

executed except for subject no. 7, who represents the wheelchair-bound individual. Subject 7 suffered 

from muscular dystrophy. To prevent any physical stress on the subject, long hours of continuous 

manipulation with the Omni by the subject were avoided. Subject 7 executed only one set as against 4 

sets executed by all the other subjects. Thus, subject 7 executed 3 trials each in the two modes, totaling 

six pick-and-place trials.  

We must also note that the results presented in Figure 30 compare the time taken by each 

subject to grasp the object i.e. it only takes into account the time from the start of a pick-and-place trial to 

the point when the subject closes the gripper paddles to complete the grasp on the first object and, for 

other objects in the pick-and-place trial, it is the time from dropping an object to when the paddles are 

closed to grasp the next object. A software timer, integrated into the program, was used to measure the 

time, thereby relieving the experimenter from holding a stop-watch and measuring and allowing him to 



www.manaraa.com

89 
 

focus on the subject executing the task. The software timer was started and stopped automatically when 

the object was placed or grasped, which in turn was detected when the subject pressed the keyboard key 

to command opening and closing of the gripper. 

 

Figure 30: Average time taken by each subjects to grasp an object. ‘Intention b/’ is a short for intention-
based asssited method. 

As we can see from the plot, all the subjects were able to complete the grasp much faster using 

our method than that unassisted method. Subject 6 is the skilled teleoperator, who also trained the 

HMMs. We can see that subject 6 was able to execute the grasping task quicker in both modes compared 

to all the other subjects. The error bars on the plots are standard errors, which were computed as follows: 

 Standard error = Standard Deviation
�𝒏𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝒔𝒂𝒎𝒑𝒍𝒆𝒔

 (58) 

We can see that the standard error for the subject 7 for the unassisted mode is much larger 

compared to other subjects. One reason could be that subject 7 performed only 3 trials in the unassisted 

mode compared to 12 trials performed by other subjects. The disability of subject 7 could have been a 

cause for huge variation in time but this is not confirmed. We also see that the same subject had very less 

variation while performing the task using our method. This shows that our method makes the grasping 

task not only quicker but also with fewer variations for a person with disability. This, however, needs to be 

confirmed. 
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Figure 31 shows the average time taken by each subject to complete a pick-and-place trial, which 

consisted to picking and placing three objects from the dishwasher rack on to the table. Again, a software 

timer integrated into the algorithm recorded the time. The average is taken over all the 8 pick-and-place 

trials for the first six subjects and for the one pick-and-place trial for the subject 7. Error bars represent 

standard error. There are no error bars for subject 7 since she executed only a single trial. We see that all 

the subjects were able to execute the pick-and-place task much quicker using our method than the 

unassisted method. The trend of average times among the subjects is also similar to that seen in Figure 

30. Subject 6, the skilled teleoperator was able to complete the task much quicker in both modes 

compared to all the other subjects whereas subject 7 took the longest time for the unassisted method. 

 

Figure 31: Average time taken by each subjects to complete a pick-and-place task trial. ‘Intention b/’ is a 
short for intention-based asssited method. 

Figure 32 gives the average number of unit hand movements made by the subjects when 

executing a pick-and-place trial. Again, a single pick-and-place trial consisted of picking and placing three 

objects from the dishwasher rack onto the table. From the figure, we can see that the subject made lesser 

hand movements while executing the task using our method than the unassisted method. Error bars are 

again standard errors and they are not shown for subject 7 since she executed only one trial. We also see 

that the trend in this figure is not the same as that in Figure 30 and Figure 31 i.e. subjects that took lesser 

time do not necessarily click the Omni stylus button lesser number of times. This could be due to several 

factors. One, the amount of unit hand movement may not be the same for all subjects i.e. the amount of 

movement between the engagement of the stylus button and its release may be different for different 
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subjects. Second, some subjects may take time to think before they actuate a movement. This adds to 

the time taken by the subjects to grasp or complete the pick-and-place task. Thus, they may be slower 

than other subjects but may have the same, or more number of stylus button clicks. Whatever factor may 

be responsible, it is still consistent for the same subject. Thus, the number of stylus button clicks gives a 

fair comparison of the amount of movements made, and hence the amount of physical effort put in by 

each subject while executing the task in the two modes. Based on ANOVA, savings in time and human 

efforts were found to be statistically significant, at 95% confidence level (𝑝 < 0.001). 

 

Figure 32: Average number of unit hand movements while executing a pick-and-place trial. ‘Intention b/’ is 
a short for intention-based asssited method. 

 

Figure 33: Ease-of-use rating for executing the grasping task from survey. Rating is from 1 (easy) to 10 
(difficult). ‘Intention b/’ is a short for intention-based asssited method. 
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Figure 34: Weighted NASA-TLX ratings for different factors for each subject from survey at the end of grasping task. ‘Intention b/’ is a short for 
intention-based asssited method. 
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We now present qualitative results which were obtained by conducting a survey at the end of the 

first test trial. Figure 33  gives the ease-of-use rating in performing the task in unassisted and intention-

based assisted modes. The two extremes of the scale were 1, which was very easy and 10, which was 

very difficult. We observe that for all the subjects, it was easier to execute the tasks using intention based 

assisted method than the unassisted method. 

Next, we present the NASA-TLX ratings that represent another set of qualitative results, gathered 

from the subjects through the survey conducted, after they completed the first set of trials. As mentioned 

earlier, NASA-TLX is a task load index i.e. it represents the task load or the workload experienced by a 

subject as they are executing a task. Figure 34 represents the weighted ratings for each factor as 

assigned by the first six subjects whereas Figure 35 gives that assigned by subject 7. We can see from 

the Figure 34 and Figure 35 that different subjects marked different factors as being dominant in the 

overall workload they experienced while executing the task. According to some subjects, certain factors 

did not contribute to their workload at all. For example, according to subject 2, performance, fatigue and 

frustration were dominant contributors to the workload whereas according to subject 4, physical and 

mental demands were the dominant factors. It is seen that temporal demand is a minor factor according 

to all the subjects i.e. all the subjects were of the opinion that the pace of the task, in both the modes, was 

generally slow and that they did not feel rushed while executing the task. We also see that most of the 

factors rated high for the unassisted mode compared to the intention based assisted mode for the same 

subject 

 

Figure 35: Weighted NASA-TLX rating for all the factors for subject 7 from survey at the end of grasping 
task. ‘Intention b/’ is a short for intention-based asssited method. 
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A few exceptions are physical and temporal demands experienced by subject 3, performance and 

frustration experienced by subject 5 and, frustration experienced by subject 7. In the case of subjects 3 

and 5, the scores for all the factors were higher for the unassisted mode but the weights made the 

weighted score higher for these few factors. However, subject 7 did experience more frustration with the 

intention based assisted method. The reason for this was the difficulty in teleoperating away from the 

currently detected object and grasp configuration to the desired one. The subjects need to make repeated 

movements towards the desired configuration when the detected configuration is not the desired. If the 

subjects make movements that do not lead to the desired configuration or do not translate and rotate the 

gripper simultaneously, they experience difficulty in manipulating out of the currently detected 

configuration. This occurs because the scaling is provided in the direction of detected configuration and 

the motion is attenuated in other directions. It is similar to a user being trapped in local minima. As we 

have seen, this does not affect the time taken by the subject to grasp an object but does annoy some 

subjects, leading to frustration. We must also note that subject 7 has zero weighted score for temporal 

demand. This does not necessarily mean that subject 7 did not experience any temporal demand. The 

subject may have assigned a score to the factor but did not give it a higher weight compared to any other 

factor i.e. the weight for this factor was zero. As a result, the weighted score is zero. Thus, NASA-TLX 

does not represent the independent influence of a factor but it represents a comparative influence. 

 

Figure 36: Weighted averaged NASA-TLX rating  for all the subjects. ‘Intention b/’ is a short for intention-
based asssited method. 
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Figure 36 shows the weighted averaged NASA-TLX ratings for all the subjects as determined 

from Equation (57). We see that the ratings are high for all subjects for the unassisted mode compared to 

the intention based assisted mode. Thus, the odd few ratings for some subjects in which the weighted 

rating for the intention based assisted mode was higher, does not seem to affect the overall score.  

In summary, the subjects found it much easier to execute the task using our intention based 

assisted method than the unassisted method. All the subjects preferred executing the preshaping and 

grasping task using our method. This can be confirmed from the ratings that they provided as well as from 

their feedback that we recorded in the attached video. According to one subject, he had to put in fewer 

thoughts into the task for preshaping to the desired configuration. The robot performed the movements for 

him while he made small movements. He added that he did not have to perform complicated maneuvers 

for orienting the gripper correctly, but only had to translate in the right direction and the robot would help 

in aligning. The unassisted method was tougher and the subject said that he had to think more while 

executing the task using this method. This is consistent with the subject’s feedback from Figure 34 

(subject 3). He also estimated to make more movements to accomplish some preshapes as he thought 

that his movement was not perfect, but was surprised when the gripper completed the preshape quickly 

with him having to make very few movements. The subject mentioned that the initial few movements are 

more difficult when the algorithm is in the process of detecting the correct intention. This is due to the 

scaling in the direction of detected intention and attenuation of motion in other directions. We must also 

note that subject 3 performed better in terms of speed compared to all other subjects. This can be seen 

from Figure 30 and Figure 31. The only subject better in terms of speed than the subject 3 was the skilled 

teleoperator (subject 6). Subject 3 was quick to lean the ability to translate and orient simultaneously 

which helps the intention recognition to detect the correct intention faster. Another subject commented 

that performing the task using the unassisted method involved a lot more thinking and, there was a lot of 

stress in figuring out angles of movement to pick up objects. He further added that with intention based 

assisted method, it seemed that the gripper performed most of the orientations on its own and it was very 

convenient to grasp the object. 
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The following observations were also made during testing. Subject 1 and 2 often got confused in 

the positive and negative pitch and yaw movements of the end-effector. Such a behavior was not seen for 

the remaining subjects. All the novice subjects tend to teleoperate along individual axis i.e. horizontally or 

vertically and hence, do not follow the shortest path that leads to the desired configuration. This produces 

a delay in the time to detect the correct intention. Such a behavior was unexpected because both the 

input and the output manipulators are free-space 6 DOF manipulators. Subject 2 also had a peculiar way 

of teleoperating to the desired target pose; the subject made the end-effector follow the edges of the plate 

to switch from grasping from the side/top to grasping from the top/side. The subject made use of the 

symmetry and edges of the plate. This may be due to the fact that edges and symmetry of objects gives a 

reference to teleoperate with respect to. This may also because the subject has never teleoperated 

before and it may reduce with time as the subject gets used to teleoperation. Some subjects preferred to 

orient the gripper to the desired target first and then translate whereas others preferred to teleoperate the 

other way round. Generally, most subjects kept switching between only-translation and only-rotation 

motions until the gripper was aligned to the target pose. Some subjects intentionally deviated from the 

desired trajectory in order to approach the desired grasping configuration from a different direction. This 

may be because of an obstacle or because they found approaching in from another direction more 

convenient. For example, subject 2 teleoperated the gripper vertically up so that rotations can be made 

without any collisions with the objects. Once fairly satisfied the subject would then start approaching the 

target. Unintentional deviations were also observed in cases where subjects would deviate in translation 

when they were focused on getting the orientation close to the desired and the other way round. In all 

these cases, the algorithm detected incorrect grasp configurations as the desired, when deviations were 

occurring. None of the user seemed annoyed due to pressing the Omni stylus button for toggling between 

intention based scaling and gripper forward-axis scaling when approaching to grasp an object. Also, 

constraining the motion in the gripper forward-axis after preshaping proved inconvenient as the subjects 

were unable to change the direction of translation and were bound to the direction they selected.  

A skilled teleoperator translates and rotates simultaneously and moves along more than a single 

DOF. A skilled operator tries to execute a trajectory along the shortest path to preshape over the desired 

configuration. Our method recognizes intention of novice users correctly and quickly in spite of the 
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disparity in their movement pattern and style, compared to the skilled user. This is one of the major 

benefits of our method. 

 

Figure 37: Average savings in time to grasp an object, for each subject 

 

Figure 38: Average savings in time to pick-and-place three objects, for each subject 

Figure 37 and Figure 38 show the average savings in time in our method over the unassisted 

method for each subject, while grasping a single object and while executing a complete pick-and-place 

task involving three objects. We can see from the figures that the pattern among all the subjects is same 

for the grasping and the pick-and-place task except for subject 2. It seems that the subject 2 took longer 

than expected to complete the pick-and-place task. Also, maximum amount of saving obtained is for 

subject 7. It was found to be approximately 65% for the grasping task and approximately 62% for the pick 

and place task. This is promising since our method is intended for use by wheelchair-bound individuals. 

The savings in time for the skilled teleoperator (subject 6) was found to be approximately 46% for the 
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grasping task and approximately 49% for the pick-and-place task. This was not expected since the skilled 

teleoperator is adept in teleoperating in the unassisted mode. 

 

Figure 39: Average savings in number of unit hand movements for each subject for pick-and-place task 

   

(a) (b) 

  

(c) (d) 

Figure 40: Different arrangements of objects in the dishwasher rack for the four sets of test trials subject 4 
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The average savings in time over all subjects to grasp an object was found to be approximately 

50% and that for the pick-and-place task for three objects was found to be approximately 51%. Thus, the 

subjects could perform the grasping and pick-and-place task at more than double the speed using our 

method, compared to the unassisted method. The percentage savings in number of unit hand 

movements, across all subjects, was found to be approximately 46% for the pick-and-place task. 

 Results from Shuffling the Objects Around 4.3.3

As mentioned earlier, the arrangement of the objects was changed at the end of each trial set i.e. 

the objects were shuffled around on the dishwasher rack. This was done to serve two purposes. One was 

to eliminate any learning effects from repeated grasping of a particular object located at the same point 

on the dishwasher. The other objective was to test if shuffling of objects had any effect on the accuracy of 

the object and grasp configuration algorithm. Sample object placements for the four trial sets of subject 

number 4 are shown in the Figure 40. 

It was observed that shuffling the objects around had no effect on the accuracy of the algorithm. 

This is because an HMM is associated with every object. Changing the pose of an object, changes the 

reference vectors to that object and the feature vectors of the HMM are computed accordingly. As long as 

the pose of the object is known fairly accurately, the feature vectors and the ensuing observation 

probabilities will be accurate. This will result in accurate object and grasp configuration recognition. Thus, 

the HMM associated with an object moves with it to the new pose. This makes the methodology suitable 

for unstructured environments. Shuffling of the objects was carried out in a similar way for all the other 

subjects i.e. the objects were randomly shuffled at the end of a trial set. Objects were also removed from 

the environment and it was observed that the accuracy of intention recognition did not change. 

 Time to Detect Intention 4.3.4

Even though the right object and grasp configuration was detected every time, in all the 12 

grasping   trials the detection was, not immediate i.e. it took certain amount of time for the algorithm to 
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detect the right intention. This time depended on the skill level of the subject and on the arrangement of 

objects. More the number of objects between the end-effector and the desired object and poorer the skill 

level of the user, more the time it took to detect the right intention. These times are depicted in Figure 41. 

They are the times for each subject averaged over all the 12 grasping trials. 

 

Figure 41: Average time taken by the algorithm to detect the correct intention 

4.4 Comparison between Intention Based Assistance and Maximum-projection Method 

The maximum-projection method is the one in which the maximum magnitudes of projection are 

used to determine the object and grasp configuration of interest. The object with the grasp point having 

the maximum projection of the end-effector translational vector, from among all grasp points of itself and 

all other objects, gives the object of interest. The grasp point from the selected object having the 

maximum projection of the end-effector orientation vector, from among all grasp points of that object, 

gives the grasp configuration of interest. The projection magnitudes are compared after averaging them 

over the last 100 readings. This is so that errors due to noise or human movement are reduced. 

 Experimental Methodology 4.4.1

For quantitative comparison, intention recognized by the system, in the two modes, over the 

length of the trajectory during each trial, was recorded. This would give an idea of accuracy of the two 

methods since the intention of the subject is known to the experimenter. Total time in the two modes for 
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execution of the complete preshaping task was also recorded to give an idea of the speed of preshaping 

task execution. 

 Results 4.4.2

The set-up for subject 2 and subject 6 in the preshape trials over a single object are shown in 

Figure 42. All three images represent the same set-up from different angles. The subjects were asked to 

teleoperate to preshape over B1 P2 and C2, starting from the home position (Figure 42 (a) and (b)) each 

time. 

   
(a) (b) (c) 

Figure 42: Three views of arrangement of the objects in preshape trials for comparison with maximum-
projection method 

The results of intention recognition for subject 2 over the length of each trajectory are shown in 

Figure 43. As seen from the figure the intention recognition in the implemented method is more consistent 

and accurate than the maximum-projection method. For the trial represented by Figure 43 (a), the subject 

intends to preshape over configuration 1 of bowl using implemented method. The figure shows that the 

algorithm detects P1, or configuration 1 of plate as the intention, initially. This is because P1 has a similar 

grasp configuration as B1 and P1 is nearer to the end-effector. As the subject continues to teleoperate to 

B1, the intention changes and remains more or less consistent. It needs to be determines as to why the 

intention jumps to B2 occasionally. Comparing this with Figure 43 (e), we see that there are too many 

fluctuations and the method determines wrong intention consistently. This could be due to the errors in 

user motion as the user is teleoperating. We also see that fluctuations for the case of B1 are more than 

that for P2 (Figure 43 (e)) and C2 (Figure 43 (f)). The reason for this could be that the bowl is placed in 
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between the cup and the plate. This causes the intention recognition to jump in between all the objects. 

On the other hand, intention recognition for objects that are on the outer periphery may be less since 

there is no object on at least one side. 

   
(a) (b) (c) 

   
(d) (e) (f) 

Figure 43: Intention recognition over the length of the trajectory for subject 6. (a), (b) and (c) represent our 
method whereas (d), (e) and (f) represent the maximum-projection method 

From Figure 43 (b), we see that the algorithm detects the intention correctly except for a few 

fluctuations in the beginning of the trial. These could have been caused due to deviations on part of the 

subject. On comparing with the maximum-probability method, we see that the intention recognition 

fluctuates between P1 and P2 for the most part of the trajectory. This also goes to the show that the 

maximum-probability method is able to determine the object somewhat accurately but fails to determine 

the correct grasp configuration consistently. From Figure 43 (c), we see that the implemented method first 

detects P1, then B2 and finally C2. This is because plate is near to the starting point of the end-effector 

and the subject starts with a predominantly pitch motion. Then as the subject teleoperates, B2 is detected 

since it has configuration very similar to C2. Finally, C2 is detected. In the end, we also see fluctuation to 

C4 and C1. This was caused as the subject overshot the desired grasp configuration. Comparing with the 

maximum-projection method (Figure 43 (f)), we see that initially the correct intention is detected 

consistently since the subject translates and orients towards C2. Here, the intention recognition is even 
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better than our method. However, as the user fine-orients and fine-positions in the end, fluctuations are 

experienced. This is because rotations are negligible when the subject is fine-positioning and translations 

are negligible when the subject is fine-orienting. These negligible magnitudes are like noise that 

fluctuates. The unit vectors in the direction of these magnitudes thus fluctuate rapidly and the maximum 

could be any of the possibilities. We also see that the time taken by the subject to execute the task in 

maximum-projection method is almost double than that taken using our method for preshaping over B1 

and P2. 

Figure 44 represents the intention recognition over the length of the trajectory for subject 2, as the 

subject was asked to preshape over B1, P2 and C2 in the two modes, our method and maximum-

projection method, each time starting from the home position. The arrangement of objects and starting 

position of the arm is shown in Figure 42. 

   
(a) (b) (c) 

   
(e) (f) (g) 

Figure 44: Intention recognition over the length of the trajectory for subject 2. (a), (b) and (c) represent our 
method whereas (d), (e) and (f) represent the maximum-projection method 

We see that subject 2 experiences more overall fluctuations than subject 6 since subject 2 is 

unskilled. Also, the fluctuations experienced by subject 2 while executing the task using our method are 

far less than those experienced in the maximum-projection method. The subject experiences some 
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fluctuations while preshaping to B1 using our method in the first half of the trial (Figure 44 (a)). The 

second half shows consistent intention detection except occasional fluctuations. Compared to this, the 

fluctuations are high in number when executing the task in maximum-projection method (Figure 44 (e)). 

Similar results are seen for C2 (Figure 44 (c) and (f)). While preshaping to P2 (Figure 44 (b)), the intention 

recognition is more consistent compared to B1 and C2 in our method (Figure 44 (a) and (c)). Figure 44 (e) 

and (f) show that the maximum-projection method is able to detect the object of interest but fails to detect 

the grasp configuration of interest. We also see that maximum-projection method takes 4 to 6 times 

longer than our method. Due to fluctuations, the subject was often guided along the unintended 

trajectories often. This led to extreme frustration. The most difficult part of the task was fine-aligning in the 

end. Here magnitudes of motion are negligible and fluctuations are the maximum. 

We now present the results of the experiments where the subject was asked to preshape to 

another grasp configuration while she was in the process of preshaping over another. The set-up is 

shown in Figure 45. We must note that this arrangement was different than that in the experiment of 

preshaping over a single grasp configuration, just described. Thus, this experiment not only measured the 

robustness of our method to intention change but also robustness to shuffling objects around. 

 

Figure 45: Arrangement of objects for change-in-intention experiment. Objects are shuffled with respect to 
Figure 42 

The results of intention recognition through the trajectory are shown in Figure 46. Red vertical 

lines show the point when the subject was asked to change their intention. In the first trial (Figure 46 (a) 

and (d)), the subject is asked to teleoperate to C4 and then as the subject is about to reach the C4, she is 
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asked to preshape over B1. Using our method, fluctuations are experienced by the subject at various 

grasp configurations of the cup, before intention change. Fluctuations are also experienced after intention 

change at the bowl. In the maximum-projection method, the cup is not detected consistently in the first 

half but the bowl is detected in the second half. The grasp configurations are not detected in the 

maximum-projection method. In the second trial, our method detects intentions consistently correctly. 

While changing from B2 to P2 (Figure 46 (b)), the algorithm momentarily detects C2 because cup is on 

the way to plate from bowl and, C2 is similar to B2. In maximum-projection method, the fluctuations are 

significant. While teleoperating to P1 and C2 (Figure 46 (c) and (f)), our method detects C3 as it is near 

P1 and is similar to P1. In the maximum-projection method, the object is detected more consistently than 

in the first two trials. The maximum-projection method takes almost 2 to 3 times more time to execute the 

task compared to our method. Thus, we can conclude that our method works well when objects are 

shuffled and intention is changed. 

   
(a) (b) (c) 

   
(d) (e) (f) 

Figure 46: Intention recognition over the length of the trajectory for subject 2 when asked to change 
intention. (a), (b) and (c) represent our method whereas (d), (e) and (f) represent the maximum-projection 
method 

In a nutshell, our method detects intention more accurately because of our usage of HMM. HMM 

provides cumulative probability and acts as a buffer against fluctuations. It combines various intention 
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indicators into a single feature vector. Due to this, the intention is calculated by total evaluation of all 

factors and not just a single factor. In contrast, maximum-projection method takes into account only one 

factor at a time. If one employs heuristics to consider multiple factors, the method will be applicable to 

only few cases and will fail in other cases. 
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Chapter 5: Conclusions  

5.1 In Summary 

The methodology of identifying object and grasp configuration of interest from motion intention 

recognition makes it much easier for a person to execute a grasping task in teleoperation. They were 

effortlessly able to align with their desired grasp configuration. This was confirmed from the survey 

conducted at the end of the trials where the subject had to score the intention based assisted and the 

unassisted method on a scale of 1 to 10; 1 being easy and 10 being difficult. The intention based assisted 

method achieved an average score of 2.86 and unassisted method achieved that of 7.29. The users 

preferred using the implemented method as they experienced less mental load and less overall workload 

in executing the task. This was confirmed via the NASA-TLX workload ratings. On a scale of 1 to 100, 

intention based assisted method an average score of 32 whereas the unassisted method averaged to 

71.14. Higher values indicate higher workload and hence more difficulty in executing the task. The 

implemented algorithm is able to determine the intention of the user early in the grasping task and, this 

combined with assistance, enables users to complete the task quickly. The grasping and the pick-and-

place task were found to be twice as quick using the intention based assisted method. In other words, the 

subjects were able to complete the grasping task 50.05% quicker and the pick-and-place task at 51.47% 

quicker using the intention based assisted mode compared to the unassisted method. The subject also 

had to make fewer movements of their hands when executing the task using intention based assisted 

method. From the trials, an average of 46.04% fewer movements were reported compared to the 

unassisted method. The subjects also reported that they preferred using the implemented method 

compared to the maximum-projection method as they had extreme difficulty in completing the task using 

the maximum-projection method. The fluctuations in the detected intention in the maximum-projection 

method assisted the subjects in the wrong directions and this added to their frustration. The fluctuations 

were mainly when the rotation was negligible, near the objects. In many cases of maximum-projection 
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method, the object was detected correctly but the grasp configurations were not. On the other hand, the 

intention detection using our method had very few fluctuations and our method consistently detected 

correct intention. This was mainly because of accumulation of output probability, high value of state 

transition probability over the same object and determining mode of the Viterbi. Thus, an HMM is robust 

erroneous changes in intention that may be caused due to unintentional deviations and errors in user 

control of robotic arm. Moreover, an HMM combines various factors, that contribute to intention 

recognition, into a single feature vector. A simplistic method like maximum-projection method would need 

thresholds to select the factor and use it depending on the scenario. This restricts its use to certain 

specific cases. 

5.2 Strengths of the Method 

a) The major benefit of the implemented method is that novice users are able to preshape and 

grasp quickly, and with much ease, without them having to train a model i.e. they achieve 

improvement in task performance by using the model trained by a skilled teleoperator. This 

saves long hours of training by each subject and frustration that arises from training in 

teleoperation. It also gives a standard to compare for our tests i.e. the same trained model. 

Improvement in task performance of the skilled teleoperator was also obtained.  

b) Another major benefit of the implemented method is that it is applicable in unstructured 

environments. In other words, if the object are added, removed or shuffled around in the 

environment, there is no need to retrain the models and the accuracy of intention recognition 

does not change. A maximum of three objects in a dishwasher, with different arrangements, 

were tested. 

c) The objects need not be a certain distance apart in translation or orientation. They can be 

close together. However, the limiting distance, if any, after which the intention recognition 

fluctuates and is unable to consistently detect the correct intention, has not been determined. 
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d) Objects that are of shapes similar to ones for which the model is developed, and of different 

sizes can be grasped using the implemented method. This is because the grasp 

configurations within an object are not related or constrained by distance or pose. 

5.3 Limitations of the Method 

a) The method does not work very well for users who have very poor teleoperation skills. How 

much skill is needed to benefit from the method has not been determined.  

b) The method may determine a wrong intention if the user does not teleoperate along the 

shortest path to a grasp configuration i.e. if the user teleoperates along individual x-y-z or roll-

pitch-yaw. This is because the user might be giving an indication to the robot that she may be 

teleoperating to another object. 

c) The method does not determine the right intention if the user momentarily deviates the end-

effector from the path leading to the desired object and grasp configuration. The user may do 

so to configure the pose of the end-effector so that it is in a more convenient configuration to 

teleoperate or to avoid an obstacle. The correct intonation is detected when the user is again 

teleoperating towards the desired object. 

5.4 Future Work 

Although the method that has been developed has proven to be beneficial, there are some 

important questions that need to be answered and improvements that, if undertaken, may result in a more 

robust, simpler and an advanced system. The future work has been listed below: 

a) Automatic provision of objects and possible grasp configurations: Integrating an RGBD vision 

system will help in automatic object identification and estimation of the grasp configurations. 

This will obviate the need for making manual measurements and it will make the method 

widely usable. One may argue that an autonomous planner can grasp the object after the 
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preshape configurations are known. But, a human will be needed to indicate the object and 

the grasp configuration. The method we have implemented is a means to achieve this end. 

b) Direct intention indication: Is there a need for intention recognition in teleoperation to convey 

the goal to the robot? The implemented method assumes that the grasp configurations and 

locations of all the objects are known apriori. An easier method of commanding the robot 

could be to use an interface that displays the possible options for grasping to the user on a 

screen and have the user select that option with hands, voice or thought. Then the user could 

be assisted in teleoperation towards the goal. Although the method is simple and easy, the 

user will need to interact with multiple interfaces viz. the screen and the joystick. In the case 

where the user needs to change the intention, they will need to stop teleoperating and query 

the robot vision for displaying the various grasp possibilities and then select from the display. 

Using our method, the user simply translates and orients the end-effector towards the new 

goal and the user is assisted towards the goal based on the intention detected. Hence our 

method is more intuitive. With the screen-selection method, the user executes more 

independent steps and this makes it tedious. 

c) On enhancing user experience: 

i. Replacing teleoperation with semi-autonomous control: An easier manner of 

completing the task after intention has been detected would be if the remaining part 

of the trajectory is executed autonomously. 

ii. Use of haptic feedback: Using of haptic feedback to enable the user to sense when 

(s)he is teleoperating beyond the desired grasp pose by providing a resisting force 

and  to enable the users to sense that they are nearing a joint limit is expected to 

enhance the user’s experience.  

iii. Velocity control: Velocity control implementation and comparison of it with the current 

position control method of executing the task will be carried out. The hypothesis is 

that velocity control will provide a better interface for executing a teleoperation based 
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task as it will be less stressful for the users to teleoperate. This is because the master 

device will act like a joystick and the number of indexes will drastically reduce. 

iv. Automatic detection of phases of task: To further enhance the user experience, 

automatic detection of the stage of the task viz. preshape, grasp, open grippers etc. 

is being planned to be implemented and also switching between various modes viz. 

intention based assistance, gripper-axis assistance etc. This will obviate the need to 

press the Omni stylus for informing the robot about switching between these stages. 

v. End-effector trapped near a wrong object: By addressing the problem of the gripper 

being trapped in the motion direction, due to the detected intention not being the 

same as the desired, as a local minima problem, this source of frustration is planned 

to be eliminated. Part of the problem is due to the object nearness probability and a 

better modeling of nearness needs to be implemented. 

d) On training and the exponential distribution model: Is the training really needed? The 

approximated exponential distribution models for various grasp configurations look very 

similar to each other. We should still obtain the same accuracy if the models for different 

grasp configurations are interchanged. This needs to be tested and if it is true, then can we 

develop a deterministic model, based on the approximated exponential distribution we have 

used. One can be developed for translation and one for rotation or the same may be used for 

both. Can the same deterministic model be used for all users or does it depend on the skill 

level of the user? It seems that a highly unskilled user will be assisted in the wrong directions 

if the current models, which are relatively steep, are used. Will using a steep model for a 

more skilled user and a relatively flat  model for a more unskilled user serve better in intention 

recognition? Will a steep model work better when the object are closer together? It might help 

to develop deterministic models for different skill levels, scenarios etc. and train the robot to 

automatically select the right models to provide maximum assistance. 
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e) On improving accuracy of intention recognition by modifying the feature vectors:  

i. Projections over undesired grasp configurations: It needs to be determined if the 

distribution of projections over reference vectors of undesired grasp configurations 

follows a pattern that can be modeled mathematically and if it does, then whether 

including them in the feature vector results in more accurate intention recognition.  

ii. Projection of end-effector frame over the desired: It needs to be determined whether 

including the projection of end-effector frame, over the desired, in the feature vector 

improves the accuracy of intention recognition. The hypothesis is that the accuracy 

will improve at the expense of marginal time. This is because the probability will be 

higher when the frame is near to the desired and low when far away. In the latter 

cases, the change in translation and orientation will case the probability to increase. 

Also, the exponential model does not model the projection of end-effector frame very 

well. Another mathematical model will be needed. 

iii. What would be a good way to represent the nearness to a grasp configuration and 

use that in the feature vector? The probability should increase as a grasp 

configuration is being approached. Using absolute distances makes the model less 

general and more specific to training. Or a lot of training will be needed, which will 

prove costly. Using normalized distances with respect to starting point would work for 

a trajectory but the reference point needs to change if intention changes. 

iv. Weighing features: Some users prefer translating to near the object and then rotating 

whereas other uses teleoperate the other way round. By learning predominantly 

translation and rotation motions and weighing the feature vector based on the kind of 

motion, the accuracy of intention recognition is expected to improve. 

f)  Distance between objects and accuracy: The limiting distance at which the intention 

recognition fluctuates and fails to consistently detect the correct intention needs to be 

determined, if one such exists. 
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g) Advanced recognition model that considers intentional deviations: An example of intentional 

deviation is when the user decides to approach an object by traversing around another 

object, rather than traversing through the shortest distance. This could be because, the 

shortest path is not possible to achieve due to obstacles or kinematic constraints. How does 

one develop a model that predicts such an intention? Does it help to use complete trajectory 

information, say in the form of transformations matrices as features in observations. The 

model might be restricted to the training examples. In cases where it is not known at training 

that an alternative route could be taken, learning automata can be used. The algorithm could 

also not reduce the probability to a small value if it detects that there is a possibility of it being 

approached from an alternative direction. The obstacle information might trigger this 

detection. At the same time the probability of other objects being intended objects increases. 

If the end-effector continues to deviate, the probability may decrease and it starts increasing 

again if the object is approached again. When the confidence level reaches a certain 

threshold, the object can be finalized as the detected object. Other peculiarities in the user 

motion need to be modeled. These are: (a) motion is performed along a single axis, (b) 

performed in an orthogonal pattern typical of novice users, (c) has deviations and then the 

gripper returns to the desired trajectory, needs to be developed. Detecting user overall 

movement progress towards a desired target, rather than intention detection from small range 

movements, needs to be implemented. 

h) Modeling grasp configurations only: Is it sufficient to only determine the most likely state? Is 

there even a need of modeling objects as HMM? If only modeling as states is sufficient, then 

the best state sequence will give the desired grasp configuration. In this case a task can be 

represented as an HMM and the various states can even have state transition probabilities 

that can be trained, may be by learning automata. E.g. a vegetable cutting task involving 

vegetables, knife, cutting tray etc. If new objects are added resulting in an increase in grasp 

configurations, then state transition matrix size can be modified accordingly. It needs to be 

determined as to why output probability computations are more robust to fluctuations than 

Viterbi sequence computation. 
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i) More testing: Tests on wheelchair-bound persons will be carried out in the future to determine 

if they will be interested in using such a methodology for grasping unreachable objects. The 

model will be tested with more skilled and novice users. The plan is to extend our system by 

using a mobile platform and providing visual feedback so that the user can perform tasks 

remotely. 
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Appendix A NASA-TLX Scoring Sheets of Subjects 

 

 

Figure A1: NASA-TLX scoring sheet 
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Appendix B Approval to Use Copyrighted Material 

B.1 Permission to Reproduce Figure 3 
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Appendix C Institutional Review Board (IRB) Approval 

 

Figure C1: Insitutional Review Board (IRB) approval letter 
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